摘要
为分析广东省大宝山矿业有限公司李屋排土场的沉降发展趋势及稳定情况,开展了排土场沉降量预测和稳定性评价的工作。基于李屋排土场757平台E号桩2018年7月—2019年6月的沉降数据构造训练样本,建立Elman模型,预测了其2019年7月—2019年9月的沉降量,并与实际值进行对比分析。在此基础上,进一步计算了沉降量预测值与实际值的单月增长值和连续3个月的平均增长速率,探讨了排土场稳定性评价结果与实际稳定状况之间的关系。结果表明:Elman模型的沉降量预测值与实际值基本吻合,预测精度较高,能够在排土场稳定性评价中发挥一定的作用;根据沉降量预测值与实际值的单月增长值和平均增长速率的对比结果,可判定李屋排土场处于稳定状态,与实际情况相吻合,评价结果是偏安全的。
In order to analyze the settlement development trend and stability of Liwu waste dump of Guangdong province Dabaoshan mining Co.,Ltd.,the settlement prediction and stability evaluation of the waste dump are investigated.Based on the settlement data of Pile E on platform 757 in Liwu waste dump from July 2018 to June 2019,the training samples are constructed,and then Elman model is established to predict the settlements from July 2019 to September 2019 and the predicted settlements are compared with the actual ones.On this basis,the monthly increments and average growth rate of three consecutive months of the predicted value and actual value of settlement are calculated,and the relationship between the stability evaluation result and the actual stable state is thoroughly discussed.The result shows that the predicted settlements by Elman model are basically consistent with the actual measurements and have relatively high prediction accuracy,which can play a role in the stability evaluation of waste dump.According to the comparison of the monthly increments and the average growth rate between the predicted settlements and the actual ones,it can be decided that Liwu waste dump is in a stable state,consistent with the actual situation and the evaluation results are relatively safe.
作者
宁志杰
袁颖
魏东
NING Zhijie;YUAN Ying;WEI Dong(School of Urban Geology and Engineering,Hebei GEO University,Shijiazhuang 050031,China;Hebei Center for Ecological and Environmental Geology Research,Hebei GEO University,Shijiazhuang 050031,China;Shaoguan Shirenzhang Mining Co.,Ltd.,Shaoguan 512000,China)
出处
《中国矿业》
2021年第4期195-200,共6页
China Mining Magazine
基金
国家自然科学基金项目资助(编号:41807231)
河北省自然科学基金项目资助(编号:D2019403182)
山西省国土资源厅省级地质勘查项目资助(编号:SXZDF20170820)。