期刊文献+

基于SE-CapsNet的肺结节良恶性诊断研究 被引量:4

Benign and Malignant Diagnosis of Pulmonary Nodules Based on SE-CapsNet
下载PDF
导出
摘要 在过去的几年中,肺癌是癌症相关死亡的主要原因。提出一种针对低剂量计算机断层扫描(CT)影像精细化预处理条件下的SE-CapsNet分类方法,解决传统肺结节诊断方法中分类精度低、假阳性高等问题。改进胶囊神经网络分类算法:对最新Hinton的胶囊神经网络进行改进,引入新的非线性激活向量,避免全局向量压缩;采用特征重标定的方法,在特征通道层面进行模型优化。在标定的感兴趣区域,利用自动阈值法对CT影像进行预处理,并在中心结节处进行样本采样,获得预处理结果数据样本。选用内含1 010个病例的公开数据集LIDC-IDRI和某医院30个脱敏肿瘤患者病例,评估改进的SE-CapsNet算法,评价指标包括准确性、敏感性和特异性。在LIDC-IDRI数据集与医院数据集中,SE-CapsNet算法的平均准确率分别达到95.83%和94.67%,优于基于Caps Net分类算法的平均准确率。此外,在分类算法的耗时方面也具有明显优势,改进的胶囊网络能够更快地收敛,得到稳定的结果。 Over the past few years,lung cancer has been the leading cause of cancer-related deaths. This paper proposed a SE-CapsNet classification method for the low-dose computed tomography(CT)image refinement preprocessing conditions. Our work solved the problems of low classification accuracy and high false positives in traditional lung nodule diagnosis methods,which improved the capsule neural network classification algorithm,including improving the latest Hinton’s capsule neural network,introducing new non-linear activation vectors,avoiding global vector compression,and optimizing the model at the feature channel level by feature reweight.We used the automatic threshold method to process the CT images by calibrating the region of interest,and took the samples at the central nodule to obtain data samples of the pre-processing results. The public data set LIDCIDRI containing 1010 cases and 30 cases of desensitized tumor patients eliminated sensitive information from hospital were used to evaluate the improved SE-CapsNet algorithm. The evaluation criteria mainly included accuracy,sensitivity and specificity. In the LIDC-IDRI dataset and the hospital dataset,the average accuracy of the SE-CapsNet algorithm reached 95. 83% and 94. 67%,respectively,which was superior to that by CapsNet classification algorithm. In addition,the classification algorithm also had obvious advantages in terms of time consumption,and the improved capsule network converged faster to obtain stable results.
作者 叶枫 王路遥 洪卫 丁国军 车镓荣 Ye Feng;Wang Luyao;Hong Wei;Ding Guojun;Che Jiarong(School of Management,Zhejiang University of Technology,Hangzhou 310023,China;Department of Thoracic Oncology,Zhejiang Cancer Hospital,Hangzhou 310023,China;Department of Radiology,Zhejiang Cancer Hospital,Hangzhou 310023,China)
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第1期71-80,共10页 Chinese Journal of Biomedical Engineering
基金 国家社会科学基金(18BJY148)。
关键词 Caps Nets SE-Net 肺结节 CT图像 计算机辅助诊断 CapsNets SE-Net pulmonary nodules CT images computer-aided diagnosis
  • 相关文献

参考文献2

二级参考文献15

  • 1陶卿.基于约束区域的神经网络模型及其在优化和联想记忆中的应用:中国科学技术大学博士学位论文[M].,1999.. 被引量:1
  • 2Cao Jinde,Journal of COmputer and System Sciences,2000年,60卷,1期,179页 被引量:1
  • 3Xia Y,IEEE Trans Neural Networks,1996年,7卷,6期,1544页 被引量:1
  • 4Henschke CI, Naidich DP, Yankelevitz OF, el al. Early lung cancer action project: initial findings on repeat screenings[J]. Cancer, 2001, 92( I): 153 -159. 被引量:1
  • 5Sahiner B, Chan HP, Hadjiiski LM, el al. Effect of CAD on radiologists' detection of lung nodules on thoracic ct scans: analysis of an observer performance study by nodule size[J]. Acad Radiol, 2009, 16( 12) :1518 - 1530. 被引量:1
  • 6Van GB, Ter Haar Romeny BM, Viergever MA. Computer-aided diagnosis in chest radiography: a survey[J]. IEEE Trans Med Imaging, 2001, 20(12) : 1228 -1241. 被引量:1
  • 7Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential[J]. Computerized Medical Imaging and Graphics, 2007 ,31 ( 4 ) : 198 - 21t. 被引量:1
  • 8Doi K. Current status and future potential of computer-aided diagnosis in medical imaging[J]. BritishJournal of Radiology, 2005, 78( I) :3 - 19. 被引量:1
  • 9McNitt-Gray MF, Armato Iii SG, Meyer CR, el ol. The Lung Image Database Consortium (LIDC) Data Collection Process for Nodule Detection and Annotation[J]. Academic Radiology, 2007, 14(12) : 1464 -1474. 被引量:1
  • 10ACR/NEMA. Digital Imaging and Communication in Medicine[EB/OL]. http://dicom. nema. org/, 2011 - 08 - 1012012 - 04 -01. 被引量:1

共引文献39

同被引文献47

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部