期刊文献+

海上动目标打击中的人工智能辅助决策

Artificial intelligence aided decision making for anti-ship strike
下载PDF
导出
摘要 在海上动目标精确打击决策中,针对从发现、识别目标到摧毁目标的延迟时间长,缺乏最佳打击点决策依据的问题,在分析海上动目标的航行特点的基础上,对卡尔曼滤波算法进行了适应性改进,实时预测和修正海上动目标的位置和速度的联合概率分布;结合对延迟时间、杀伤效能等要素的分析,对计算结果进行人性化抽象,为决策者提供可靠的人工智能辅助决策依据。 In order to solve the problem of long delay time from finding and identifying targets to destroying targets and lack of decision-making basis of the best strike point,this paper analyzes the navigation characteristics of moving targets on the sea,improves the adaptability of Kalman filter algorithm,predicts and corrects the joint probability distribution of position and velocity of moving targets on the sea in real time;By analyzing the factors such as delay time and destruction efficiency,the calculation results are abstracted with humanizing,which provides decision-makers with a reliable artificial intelligence aided decision making basis.
作者 王拓 朱德政 于翔 Wang Tuo;Zhu Dezheng;Yu Xiang(The 28th research institute of China electronics technology group corporation,Nanjing,Jiangsu 210000,China)
出处 《计算机时代》 2021年第4期1-3,7,共4页 Computer Era
关键词 海上动目标 精确打击 人工智能 决策理论 moving target on the sea precision strikes artificial intelligence decision theory
  • 相关文献

参考文献4

二级参考文献20

  • 1吴鹏,邱涤珊,祝江汉,周敏龙.联合战役仿真演示系统[J].计算机仿真,2005,22(7):22-25. 被引量:6
  • 2杜伟,李智.弹道导弹反航母仿真系统设计研究[J].计算机工程与应用,2006,42(29):226-228. 被引量:6
  • 3周彦 戴剑伟.HLA方针程序设计[M].北京:电子工业出版社,2002.. 被引量:2
  • 4赵宗贵,雄朝华,王珂,等.信息融合概念、方法与应用[M].北京:国防工业出版社,2012. 被引量:16
  • 5Sinha A, Kirubarajan T, Bar-Shalom Y. Application of the Kalman-levy filter for tracking maneuvering targets [ J ]. IEEE Transactions on Aerospace and Elecrtonic Sys- tems, 2007, 43(3): 1099-1107. 被引量:1
  • 6Lu Zhang, van der Maaten L J P. Preserving structure in model-free tracking [ C ]// IEEE Transactions on Pattern Analysis and Machine Intelligence. [ S. 1. ]: IEEE Press, 2014, 36(4): 756-769. 被引量:1
  • 7Hu Keli , Zhang Xing, Gu Yuzhang, et al. Fusing tar- get information from multiple views for robust visual tracking [J]. IET Computer Vision, 2014, 8(2): 86- 97. 被引量:1
  • 8Hanlon P D, Maybeck P S. Multiple-model adaptive esti- mation using a residual correlation Kalman filter bank [ J]. IEEE Transactions on Aerospace and Elecrtonic Sys- tems, 2000, 36(2): 393-406. 被引量:1
  • 9Sanchez-Garcia A J, Rios-Figueroa H, Marin-Hernandez A, et al. Tracking and prediction of motion of segmented regions using the Kalman filter [ C ]// International Con- ference on Electronics, Communications and Computers. Cholula (Mexico): IEEE Press, 2014: 88-93. 被引量:1
  • 10Glass J D, Lanterman A D. MIMO radar target tracking using the probability hypothesis density fiter [ C ]// IEEE Aerospace Conference. Big Sky ( USA ) : IEEE Press, 2012: 1-8. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部