摘要
SnO_(2) is considered to be a promising candidate as anode material for lithium ion batteries,due to its high theoretical specific capacity(1494 mAh·g^(-1)).Nevertheless,SnO_(2)-based anodes suffer from poor electronic conductivity and serious volume variation(300%)during lithiation/delithiation process,leading to fast capacity fading.To solve these problems,SnO_(2) quantum dots modified N-doped carbon spheres(SnO_(2) QDs@N-C)are fabricated by facile hydrolysis process of SnCl2,accompanied with the polymerization of polypyrrole(PPy),followed by a calcination method.When used as anodes for lithium ion batteries,SnO_(2) QDs@N-C exhibits high discharge capacity,superior rate properties as well as good cyclability.The carbon matrix completely encapsulates the SnO_(2) quantum dots,preventing the aggregation and volume change during cycling.Furthermore,the high N content produces abundant defects in carbon matrix.It is worth noting that SnO_(2) QDs@N-C shows excellent capacitive contribution properties,which may be due to the ultra-small size of SnO_(2) and high conductivity of the carbon matrix.
基金
financially supported by the National Natural Science Foundation of China(Nos.51702138 and 21817056)
the Natural Science Foundation of Jiangsu Province(Nos.BK20160213 and BK20170239)
the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX202358)。