摘要
本文研究含慢变量非线性系统边值问题:x’=f(t,x,y,ε)x(1,ε)=α(ε)εy”=F(t,x,y,y’,ε),y(1,ε)=b(ε),y(0,ε)=c(ε)当F(t,x,y,y’,ε)关于y’的Jacabi矩阵F_y’的特征值具有非零实部时,应用对角化技巧证明了摄动解的存在性,并给出了解的零阶近似.
This paper studies the boundary value psoblem of nonlinear system with slow variablesx'= f(t,x,y,ε),x(1,ε)= a(ε)εy'= F(t,x,y,y',ε),y(1,ε) = b,y(0,ε) =c(ε)when the eigenvalue of Jacobi matrix fy' of F(t, x, y, y',ε ), with respect to y', has a nonzero real part.We use the technique of diagonalization to prove the existence of solution and give its approximation.
出处
《福建师大福清分校学报》
1996年第2期10-17,共8页
Journal of Fuqing Branch of Fujian Normal University
基金
福建省自然科学基金