摘要
视觉里程计在移动机器人的定位导航中发挥着关键性作用,但当前的算法在运行速度、轨迹精度和鲁棒性等方面依然存在改善空间。为提高相机轨迹精度,提出基于稀疏直接法的闭环检测算法。该算法直接提取两种特征组成混合型特征点提升系统鲁棒性,混合型特征点用于跟踪和匹配关键帧,使视觉里程计能够检测闭环,再用位姿图优化提升定位精度。实验结果表明在复杂环境中具有较强的鲁棒性,并且在速度和精度之间取得平衡。
The visual odometry plays a key role in the positioning and navigation of mobile robots,but the current algorithm still has room for improvement in terms of running speed,trajectory accuracy,and robustness.In order to improve the accuracy of camera trajectory,a loop-closure detection algorithm is proposed based on the sparse direct method.The algorithm directly extracts two features to form a hybrid feature point to improve the robustness of the system.The hybrid feature point is used to track and match key frames,so that the visual odometry can detect closed loops,and then the pose map is used to optimize the positioning accuracy.Experimental results show strong robustness in a complex environment and a balance between speed and accuracy.
作者
汝少楠
何元烈
叶星余
Ru Shao-nan;He Yuan-lie;Ye Xing-yu(School of Computers,Guangdong University of Technology,Guangzhou 510006,China)
出处
《广东工业大学学报》
CAS
2021年第3期48-54,共7页
Journal of Guangdong University of Technology
基金
国家自然科学基金资助项目(61876043)。
关键词
视觉里程计
闭环检测
稀疏直接法
视觉特征
相机轨迹
visual odometry
loop-closure detection
sparse direct method
visual feature
camera trajectory