期刊文献+

基于径向基函数神经网络的风力机结构适应性评估 被引量:4

FLEXIBILITY EVALUATION OF WIND TURBINE STRUCTURE USING RADIAL BASIS FUNCTION NEURAL NETWORK
下载PDF
导出
摘要 提出一种基于径向基函数神经网络(radial basis function,RBF)的风力机结构适应性评估方法,综合考虑多个载荷分量对风力机结构应力响应的影响。该新型适应性评估方法与当前采用的单变量、线性插值预测方法相比精度更高更可靠,与有限元方法相比更高效。采用该评估方法,1 min内可完成风力机机头部件及关键连接螺栓强度评估,最大应力预测误差不超过1%。 A new wind turbine structure flexibility evaluation method based on the radial basis function(RBF)neural network is presented in this paper.The effect of multiple load components on the stracture stress of the wind turbine is comprehensively considered to wind stress into account.Compared with the current single variable and linear interpolation prediction methods,this new flexibility evaluation method has higher precision and is more reliable.Compared with the finite element method,it is no doubt a more efficient way.The strength evaluation of wind head parts and key connection bolt can be completed in one minute by using this evaluation method,and the maximum stress prediction error is less than 1%.
作者 王培德 刘朝丰 唐静 宋小飞 Wang Peide;Liu Chaofeng;Tang Jing;Song Xiaofei(Beijing Goldwind Science&Creation Wind Power Equipment Co.,Ltd.,Beijing 10017,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第2期185-188,共4页 Acta Energiae Solaris Sinica
关键词 风力发电机组 神经网络 应力 有限元分析 适应性评估 wind turbine generator neural network stress finite element analysis flexibility evaluation
  • 相关文献

参考文献4

二级参考文献25

  • 1贺德罄,等.风工程与工业空气动力学[M].北京:国防工业出版社,2006. 被引量:2
  • 2窦秀容.水平轴风力机气动性能及结构动力学特性研究[D].山东工业大学,1995,8. 被引量:3
  • 3Ye Zhiquan, Ma Haomin, Bao Nengsheng, et al. Structure dynamic analysis of a horizontal axis wind turbine system using a modal analysis method[J]. Wind Engineering, 2001,25 (4) : 237-248. 被引量:1
  • 4Roy A, Bandyopadhyay G. Numerical calculation of separated flow past a circular cylinder using panel technique[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(3) : 131-149. 被引量:1
  • 5Niemann H J, Holscher N. A review of recent experiments on the flow past circular cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990,33(2):197-209. 被引量:1
  • 6Blevins R D. How-induced vibration[M]. New York: Van Nostrand Reinhoid Co, 1977. 被引量:1
  • 7Roshko A. Perspectives on bluff body aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 79-100. 被引量:1
  • 8NSF I/UCRC Center for Intelligent Maintenance Systems. Full IMS vision and mission[EB/OL]. (2006-01-10) [2006-01-15 ]. http: //www.imscenter.net. 被引量:1
  • 9SHAO Y, NEZU K. Prognosis of remaining beating life using neural networks[J]. Journal of Systems and Control Engineering, 2000, 214 (13): 217-230. 被引量:1
  • 10QIU H, LEE J, LIN J, et al. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics[J]. Advanced Engineering Informatics, 2003,17 (3-4): 127-140. 被引量:1

共引文献164

同被引文献68

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部