期刊文献+

狄克逊检验法滤波RSSI的室内定位算法 被引量:8

Indoor Positioning Algorithm Based on Dixon Test Filtering RSSI
下载PDF
导出
摘要 针对接收信号强度指示(Received Signal Strength Indication,RSSI)测距定位算法存在定位结果不稳定且精度低的问题,本文分析了一种基于狄克逊检验法滤波RSSI的高斯牛顿定位(Dixon test filter RSSI Gauss-Newton,DF-RSSI-GN)算法。采用狄克逊(Dixon)检验法滤波剔除观测信号异常值使得观测数据偏度降低,根据偏态程度对观测信号进行高斯均值滤波并通过非线性回归模型拟合RSSI衰减模型参数,在目标点坐标求解阶段利用滤波后的观测信号确定不同方向上的权值进行高斯牛顿(Gauss-Newton)迭代定位。实验结果表明,DF-RSSI-GN算法定位平均精度在1.5 m左右,相比RSSI定位算法和最小二乘定位算法,精度提高1倍以上。 In order to solve the problem of unstable location results and low accuracy of Received Signal Strength Indication(RSSI)algorithm,this paper analyzes a Gauss-Newton localization algorithm based on the Dixon test filtering RSSI(DF-RSSI-GN).The method of Dixon test is used to filter out the observation signal outliers,which can reduce the deviation of the observation data.According to the degree of deviation,the observation signal is filtered by Gaussian-mean and the parameters of the RSSI attenuation model are fitted by nonlinear regression.The weights in different directions are determined by the filtered observation signal to carry out Gauss-Newton iterative positioning.The experimental results show that the average positioning accuracy of DF-RSSI-GN algorithm is about 1.5 m,which is more than one time higher than these positioning algorithms of RSSI and Least Squares.
作者 王建强 代阳 雷倩芳 WANG Jianqiang;DAI Yang;LEI Qianfang(Faculty of Geomatics,East China University of Technology,Nanchang Jiangxi 330013,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2021年第1期118-123,共6页 Chinese Journal of Sensors and Actuators
基金 江西省自然科学基金项目(20202BABL202046) 国家自然科学基金项目(41464001) 国家重点研发计划项目(2016YFB0501405)。
关键词 室内定位 狄克逊检验法滤波 高斯牛顿法 RSSI indoor localization dixon test filtering gauss-newton method RSSI
  • 相关文献

参考文献10

二级参考文献74

  • 1史龙,王福豹,段渭军,任丰厚.无线传感器网络Range-Free自身定位机制与算法[J].计算机工程与应用,2004,40(23):127-130. 被引量:114
  • 2张双成,杨元喜,张勤.一种基于抗差自校正Kalman滤波的GPS导航算法[J].武汉大学学报(信息科学版),2005,30(10):881-884. 被引量:19
  • 3杨元喜.自适应抗差最小二乘估计[J].测绘学报,1996,25(3):206-211. 被引量:58
  • 4谷红亮,史元春,申瑞民,陈渝.一种用于智能空间的多目标跟踪室内定位系统[J].计算机学报,2007,30(9):1603-1611. 被引量:18
  • 5孙利民,李建中,陈渝,等.无线传感网络[M].北京:清华大学出版社,2005. 被引量:56
  • 6He T, Huang C D, Blum B M, et al. Range-free localization schemes for large scale sensor networks[C] // Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, September 14-19, 2003, San Diego, California. New York: ACM Press, 2003:81 -95. 被引量:1
  • 7Li Y M, Meng M Q H, Li S, et al. Particle filtering for range-based localization in wireless sensor networks[C ff Proceedings of the 7th World Congress on Intelligent Control and Automation, June 25-27, 2008, Chongqing, China. Piscataway: IEEE, 2008:1629-1634. 被引量:1
  • 8Wang N, Shen X L. Research on WSN nodes location technology in coal mine[C]//Proceedings of IFCSTA 2009 International Forum on Computer Science- Technology and Applications, December 25-27, 2009, Chongqing, China. Piscataway: IEEE, 2009: 232-234. 被引量:1
  • 9Yu K, Guo Y J. Statistical NLOS identication based on AOA, TOA and signal strength [ J ]. IEEE Transactions on Vehicular Technology, 2009, 58 (1) 274-286. 被引量:1
  • 10Li J D, Sun X Y, Huang P Y, et al. Performance analysis of active target localization using TDOA and FDOA measurements in WSN[C] // Proceedings of the 22nd International Conference on Advanced Information Networking and Applications-Workshops, March 25- 28, 2008, Okinawa, Japan. Piscataway: IEEE, 2008:585-589. 被引量:1

共引文献172

同被引文献82

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部