期刊文献+

一种基于压缩感知的超声阵列全矩阵数据重构方法

A Full Matrix Data Reconstruction Method of Ultrasonic Array Based on Compressed Sensing
下载PDF
导出
摘要 针对传统全矩阵数据采集数据量大、采样时长随阵元个数增加的问题,提出了一种基于压缩感知的超声阵列全矩阵数据重构方法。根据多阵元等幅同步有限次激励下采集的超声信号与全矩阵数据的压缩采样关系,利用多阵元等幅同步有限次激励下采集到的少量超声信号进行超声阵列全矩阵数据重构,并将重构数据用于缺陷的全聚焦成像。基于提出的数据压缩采集模式,开展了块状试件中缺陷超声相控阵检测实验,并分析了稀疏变换基、激励阵元个数、激励次数等因素对检测结果的影响规律。实验结果表明,提出的方法可以在75%压缩率下实现超声全矩阵数据的重构,重构数据与实际全矩阵数据的均方根误差约为6%,可用于缺陷的全聚焦成像。 In order to speed up the acquisition and reduce the amount of full matrix data,a method for reconstructing full matrix data of ultrasonic array based on compressed sensing is proposed.According to the compressied sampling relationship between them,the less signals collected in the multi-element finite excitation mode were used to recover the full matrix data,while the reconstructed data is used for total focus imaging of structural damage.Based on the proposed data compression and acquisition mode,an ultrasonic phased array experiment for defects in block specimens was carried out,and the influence of factors such as the sparse transformation basis,the number of excitation elements,and the number of excitation on the detection results were analyzed.Experimental results show that,at a compression rate of 75%,the RMS error of reconstructed full matrix data is about 6%,which can be used for total focus imaging of defects.
作者 吴斌 刘萧冰 焦敬品 何存富 WU Bin;LIU Xiao-bing;JIAO Jing-pin;HE Cun-fu(Faculty of Materials and Manufacturing,Beijing University of Technology,Beijing 100124,China)
出处 《测控技术》 2021年第3期96-101,共6页 Measurement & Control Technology
基金 国家自然科学基金项目(11772013)。
关键词 压缩感知 无损检测 超声相控阵 全矩阵数据 compressed sensing nondestructive testing ultrasonic phased array full matrix data
  • 相关文献

参考文献8

二级参考文献57

  • 1霍健,杨平,施克仁,张伟.基于遗传算法的二维随机型稀疏阵列的优化研究[J].声学学报,2006,31(2):187-192. 被引量:13
  • 2门长峰,帅健.输送管道应力腐蚀开裂和氢致开裂[J].天然气工业,2006,26(11):133-135. 被引量:9
  • 3Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on, 2006, 52(4): 1289-1306. 被引量:1
  • 4Candes E J, Romberg J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, IEEE Transactions on, 2006,52(2): 489-509. 被引量:1
  • 5Wang G, Bresler Y, Ntziachristos Y. Guest editorial compressive sensing for biomedical imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1013-1016. 被引量:1
  • 6Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. 被引量:1
  • 7Tur R, Eldar Y. C, Friedman Z, Innovation rate sampling of pulse streams with application to ultrasound imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1827-1842. 被引量:1
  • 8Kirolos S, Laska J, Wakin M, et al. Analog-to-information conversion via random demodulation[C]// Design, Applications, Integration and Software, 2006, 71-74. 被引量:1
  • 9Shi G. UWB echo signal detection with ultra-low rate sampling based on compressed sensing. Circuits and Systems II: Express Briefs. IEEE Transactions on. 2008. 55(4): 379-383. 被引量:1
  • 10Grant M, Boyd S. CVX: Maflab software for disciplined convex programming[Z]. Available:http: //www.stanford.edu/hoyd/cvx/. 被引量:1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部