期刊文献+

基于骨架关键点的车内异常行为识别方法 被引量:3

Recognition Method of Abnormal Behavior in Car Based on Skeleton Key Points
下载PDF
导出
摘要 针对现有异常行为识别方法在车内场景应用少,并且受车内空间狭小、异常行为复杂多变等影响导致识别有效性差等问题。在Alpha pose模型提取驾乘人员骨架关键点基础上,构建驾乘人员人体坐姿模型,采用关键点位置信息描述异常状态,最后利用概率学习模型将位置信息转换为概率对行为进行识别分类。经实验测试,该方法对车内前排人员异常行为的识别准确率能够达到90%以上,且具有一定的实用价值。 In view of the fact that the existing abnormal behavior identification methods is rarely used in the car scene,and due to the small space in the car,abnormal behaviors are complex and changeable,resulting in poor recognition effectiveness and other problems,the Alpha Pose model was used to extract the key points of the driver s skeleton,the sitting posture model of the driver s body was constructed,and the position information of the key points was used to describe the abnormal state.Finally,the probabilistic learning model is used to trans form location information into probability to identify and classify behaviors.The experimental results show that the recognition accuracy of the method can reach more than 90%,and it has a certain practical value.
作者 赵雄 陈平 潘晋孝 ZHAO Xiong;CHEN Ping;PAN Jinxiao(Shanxi Key Laboratory of Signal Capturing and Processing,North University of China,Taiyuan 030051,China)
出处 《机械与电子》 2021年第3期10-15,共6页 Machinery & Electronics
基金 国家自然科学基金资助项目(61801437,61871351,61971381) 山西省自然科学基金资助项目(201801D221206,201801D221207) 山西省研究生创新项目资助(2020BY098)。
关键词 Alpha pose 坐姿骨架关键点 概率学习模型 车内异常行为识别 Alpha pose key points of sitting skeleton probabilistic learning model abnormal behavior recognition in the car
  • 相关文献

参考文献10

二级参考文献41

共引文献77

同被引文献11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部