期刊文献+

基于粒子约束的粒子群地磁匹配算法 被引量:8

A PSO geomagnetic matching algorithm based on particle constraint
下载PDF
导出
摘要 地磁导航初始定位误差较大时,由于搜索区域过大,粒子群地磁匹配算法会出现粒子密度下降、算法收敛效率低等问题。为了提高粒子群优化的收敛速度与地磁匹配成功率,提出一种基于粒子约束的粒子群地磁匹配算法。首先,利用地磁测量冗余信息,结合地磁先验图,扩充待匹配点的地磁序列;然后计算待匹配点为真实位置的置信概率,并通过对搜索区域置信概率密度函数的约束划定有效定位区;最后在有效定位区内初始化粒子并进行粒子迭代更新,从而提高粒子位置准确度。实验表明,在初始定位偏差较大时,地磁冗余信息约束下的粒子初始化范围为常规搜索范围的1/4,所提算法在不同地磁测量噪声条件下都有良好的匹配效果,在定位精度方面优于其他对比算法。 When the initial positioning error of geomagnetic matching navigation is large,due to the vast searching area,particle swarm geomagnetic matching algorithm(PSO)has some problems such as decreasing particle density and low convergence efficiency.In order to speed up the convergence of PSO and increase the geomagnetic matching success ratio,a PSO matching algorithm based on particle constraint is proposed for the geomagnetic navigation.Firstly,the geomagnetic sequence of the matching points is expanded by using the geomagnetic measurement redundant information and combining with the geomagnetic prior map.Secondly,the confidence probability of the real location is calculated and the effective location area is delimited by the constraint of the confidence density function of the search area.Finally,particles are initialized in the effective location area and the particle iteration is carried out to improve the position accuracy of particles.Experiment results show that the particle initialization range under the constraint of geomagnetic redundancy information is 1/4 of the conventional search range with big initial positioning deviation.The proposed algorithm has good matching effect with different measurement noise and better position accuracy compared with other state-of-art algorithms.
作者 王立辉 许宁徽 刘庆雅 WANG Lihui;XU Ninghui;LIU Qingya(Key laboratory of micro-inertial instrument and advanced navigation technology,Ministry of education,School of instrument science and engineering,Southeast University,Nanjing 210096,China;State Key Laboratory of Geo-Information Engineering,Xi’an 710054,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2020年第6期755-760,共6页 Journal of Chinese Inertial Technology
基金 国家自然科学基金资助项目(61773113) 江苏省重点研发计划(BE2018384) 地理信息工程国家重点实验室基金资助项目(SKLGIE2019-K-2-1)。
关键词 地磁匹配 粒子群优化 地磁冗余信息约束 地磁导航 geomagnetic matching particle swarm optimization geomagnetic redundancy information constraint geomagnetic navigation.
  • 相关文献

参考文献4

二级参考文献24

共引文献35

同被引文献69

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部