期刊文献+

无人驾驶深度学习模型组合剪枝算法 被引量:3

Combined pruning algorithm for unmanned deep learning model
下载PDF
导出
摘要 首先对网络模型进行正则化,提高网络泛化能力及模型稀疏度;接着采用组合剪枝算法,先对卷积层卷积核进行删减,再对全连接层权重进行删减。剪枝过程分多次进行,每次剪枝后通过再训练以恢复模型分类识别性能。实验结果表明:提出的组合剪枝算法能够在保证VGG—16网络对车辆数据集分类识别率保持在92.84%的情况下,对网络模型压缩了79%,加速3.38倍。 Firstly,the network model is regularized to improve the generalization ability network and sparsity of model.Then,the combined pruning algorithm is adopted.Convolutional layer convolution kernel is firstly deleted,and then the full connection layer weight is deleted.The pruning process is carried out several times,and each time after pruning,it is retrained to restore the model classification and recognition performance.The experimental results show that the combined pruning algorithm can compress the network model by 79%and accelerate by 3.38 times while ensuring that the VGG-16 network keeps the classification and recognition rate of the vehicle dataset at 92.84%.
作者 赵丽君 周永军 汤小红 蒋淑霞 董寅宾 廖慕钦 ZHAO Lijun;ZHOU Yongjun;TANG Xiaohong;JIANG Shuxia;DONG Yinbin;LIAO Muqin(School of Mechanical and Electrical Engineering,Central South University of Forestry and Technology,Changsha 410000,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第3期127-129,共3页 Transducer and Microsystem Technologies
基金 长沙市科技计划资助项目(kq1701102)。
关键词 无人驾驶 卷积神经网络 权重剪枝 卷积核剪枝 组合剪枝 unmanned convolutional neural network(CNN) weight pruning convolutional kernel pruning combination pruning
  • 相关文献

参考文献3

二级参考文献34

  • 1Bishop R. A survey of intelligent vehicle applications world wide[ C ]// IEEE Intelligent Vehicles. Michigan ,2002:25 -29. 被引量:1
  • 2Sun Z, Miller R, Bebis G, et al. A real-time precrash vehicle detection system[ C ]//IEEE International Workshop on Application of Computer Vision, Washington DC, 2002 : 1 -6. 被引量:1
  • 3Mori H, Charkai N. Shadow and rhythm as sign patterns of obstacle detection[ C ]// IEEE Industrial Electronics, Budapest, 1993 : 271 -277. 被引量:1
  • 4Tzomakas C, Seelen W. Vehicle detection in traffic scenes using shadows[ R]. Bochum Ruht Universidad: Internal Report IRINI, 1998 : 79 -85. 被引量:1
  • 5Matthews N, Charnley D. Vehicle detection and recognition in grayscale imagery[ J ]. Control Engineering Practice, 1996,4 (4) : 473 -479. 被引量:1
  • 6Ninomiya Y, Matsuda S, Ohta M. A real-time vision for intelligent vehicles[ C]//IEEE Intelligent Vehicles, Michigan, 1995:315 - 320. 被引量:1
  • 7Bertozzi M, Broggi A, Castelluccio S. A real-time oriented system for vehicle detection [ J ]. Systems Architecture, 1997,43 (3) : 317 - 325. 被引量:1
  • 8Kalinke T, Tzomakas C. A texture-based object detection and adaptive model-based classification [ C ] //IEEE Intelligent Vehicles, Stuttgart, 1998 : 143 -148. 被引量:1
  • 9Buluswar S D, Draper B A. Color machine vision for autonomous vehicles [ J ]. Engineering Applications of Artificial Intelligence, 1998,11(2) :245-256. 被引量:1
  • 10Guo D, Fraichard T, Xie M. Color modeling by spherical influence field in sensing driving environment [ C ]//IEEE Intelligent Vehicles, Dearborn ,2000:249 -254. 被引量:1

共引文献23

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部