期刊文献+

基于关联挖掘的在线学习行为规律实证分析研究

Evidence Based Analytical Research on Behavioral Pat⁃tern of Online Learning via Association Mining
下载PDF
导出
摘要 当前,在线教育已经成为现代教育的重要组成部分,为教育形式的创新开拓了无限的可能。但是,以慕课为代表的在线教育的课程注册人数通常远远高于最终完成课程的人数,课程完成率较低。该文探索影响在线学习效果特别是课程完成率的因素,并据此提出改进建议。具体采取了实证研究的方法,运用了关联规则挖掘技术和WEKA数据挖掘开源工具,对学堂在线平台上39门课程的学习记录数据进行分析,得出了一系列基于大数据的、有指导意义的在线学习行为方面的关联规则,为进一步开展后续研究提供了参考。 Currently,online education has been an important part of modern education,which extends infinite space for the innovation of education forms.Nevertheless,in online education,represented by MOOC,the number of users who register to a course is much less than that of users who finish the course eventually;in other words,the ratio of course completion is fairly low.In light of this,this paper tries to explore behavioral patterns of online learning,finds out influential factors to the effect of online learning(especially ratio of course completion),and based on that,puts forward corresponding suggestions for improvement.Specifically,it adopts the evidence-based research methodology,applies association rule mining technology and WEKA data mining open-source tool over the learning log data from 39 courses on XuetangX for analysis.A series of association rules for online learning behaviors,based on big data and of guiding significance,are presented,which provide some clues and references to follow-up research.
作者 赵翔 李欣奕 谭真 唐九阳 ZHAO Xiang;LI Xinyi;TAN Zhen;TANG Jiuyang
出处 《科教文汇》 2021年第8期2-9,共8页 Journal of Science and Education
基金 湖南省教育科学“十三五”规划课题(课题编号:XJK016QXX001) 全国教育科学“十三五”规划课题(课题编号:ECA160409)的阶段性研究成果。
关键词 慕课 在线学习行为 关联规则 大数据分析 MOOC online learning behavior association rules big data analytics
  • 相关文献

参考文献7

二级参考文献28

  • 1Ry Rivard. Measuring the MOOC Dropout Rate [EB/OL].http : //www.insidehighered.com/news/2013/03/08/research—ers-explore-who-taking-moocs-and-why-so-many-drop-out. 2014-10-18. 被引量:1
  • 2Andrew Dean Ho, Justin Reich,Sergiy 0 Nesterko,Daniel Thomas Seaton,Tommy Mul-laney,Jim Waldo,Isaac Chuang. HarvardX and MITx:TheFirst Year of Open Online Courses (HarvardX and MITxWorking Paper No. 1)[EB/OL]. http://papers_ssm.com/sol3/papers.cfm?abstxact_id=2381263.2014-10-18. 被引量:1
  • 3Jennifer DeBoer,Glenda S. Stump,Daniel Seaton,LoriBreslow.Diversity in MOOC Students’ Backgrounds andBehaviors in Relationship to Performance in 6.002x[EB/OL ] . http : //tIl.mit.edu/sites/defauIl/files/library/LINC%20%2713.pdf. 2014-10-18. 被引量:1
  • 4Ren6 F. Kizilcec,Chris Piech and Emily Schneider.Deconstructing Disen-gagement :Analyzing Learner Subpopulations in MassiveOpen Online Courses [EB/OL]. http://www.stanford.edu/?cpiech/bio/papers/deconstructingDisengagement.pdf.2014-10-18. 被引量:1
  • 5Gayle Christensen,Andrew Steinmetz,BrandonAlcorn, Amy Bennett, Deirdre Woods and Ezekiel J E-manuel.The MOOC Phenomenon : Who Takes Massive OpenOnline Courses and Why [EB/OL]. http://papers.ssrn.com/so!3/papers.cfm?abstract_id=2350964. 2014-10-18. 被引量:1
  • 6Yvonne Belanger,JessicaThornton. Bioelectricity : A Quantitative Approach [ EB/OL ].http : //dukespace.lib.duke.e du/dspace/bitstream/handle/10161/6216/Duke ? Bioelectricity _ MOOC_F all2012.pdf.2014-10-18. 被引量:1
  • 7MOOCs@Edinburgh Group.MOOCs@Edin-burgh 2013 Report #1 [EB/OL]. https://www.era.lib.ed.ac.uk/bitstream/1842/6683/l/Edin burgh% 20MOOCs% 20Re—port%202013%20%231.pdf.2014-10-18. 被引量:1
  • 8George Veletsianos. Learning Experienceswith MOOCs and Open Online Leaming[ EB/OL ]. http : //hy-brid-pedagogy.github.io/LeamerExperiencesInMOOCs/Le -amerExperiencesInMOOCs.pdf. 2014-10-18. 被引量:1
  • 9MOOC学院.2014年MOOC学习者调査报告[EB/OL]. http://www.aieln.com/article-7286-l.htmL 2014-10-18. 被引量:1
  • 10梁林梅,唐卉.大学生MOOCs学习经历研究报告——以N大学为例[R] ,2013. 被引量:1

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部