期刊文献+

基于CNN和LSTM的脑电信号情感识别 被引量:15

EEG⁃based emotion recognition using CNN and LSTM
下载PDF
导出
摘要 为了提高脑电信号情感识别的准确率,提出了一种基于卷积神经网络(CNN)和长短时记忆(Long Short⁃Term Memory,LSTM)网络的脑电信号情感识别方法。首先,对62个通道的脑电信号进行预处理,并对预处理后的每个通道的脑电信号分别采用一维卷积神经网络提取情感特征。然后,利用LSTM网络在序列上的建模能力,将62个通道的情感特征组成特征序列依次输入到LSTM网络,提取多通道融合情感特征。最后,将LSTM网络输出的多通道融合情感特征输入到全连接层和Softmax分类器,将情感分成积极、中性、消极3种类别。在脑电情感数据集SEED上进行了情感识别实验,取得了88.15%的平均分类准确率。实验结果表明,文中提出的脑电信号情感识别方法的性能优于基于传统人工设计特征及支持向量机(SVM)或深度置信网络(DBN)的其他方法,验证了文中提出方法的可行性和有效性。 To improve the classification accuracy of emotion recognition from EEG signals,an EEG⁃based emotion recognition method is proposed by using convolutional neural network(CNN)and long short⁃term memory(LSTM)network.Firstly,the EEG signals from 62 channels are pre⁃processed and the emotion features are separately extracted from the pre⁃processed EEG signals for each channel by using one⁃di⁃mensional convolutional neural network.Then,the emotion features from 62 channels are in turn input into the LSTM network to extract the multi⁃channel fusion emotion features by the modeling ability of LSTM network in sequence.Finally,the multi⁃channel fusion emotion features from LSTM network are input into the full connection layer and Softmax classifier,and the emotion is classified into three categories:positive,neutral and negative.The experiment for emotion recognition is carried out on the SJTU EEG e⁃motion dataset(SEED),and the average classification accuracy is 88.15%.Experimental results show that the performance of the proposed method is better than that of other methods based on traditional hand⁃craft features and support vector machine(SVM)or deep belief network(DBN),thus demonstrating the feasibility and the effectiveness of the proposed method.
作者 卢官明 丛文康 魏金生 闫静杰 LU Guanming;CONG Wenkang;WEI Jinsheng;YAN Jingjie(College of Telecommunications&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2021年第1期58-64,共7页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 江苏省重点研发计划(BE2016775) 江苏省研究生科研创新计划(KYCX19_0899,KYCX19_0954)资助项目。
关键词 情感识别 卷积神经网络 长短时记忆网络 脑电信号 emotion recognition convolutional neural network(CNN) long short⁃term memory(LSTM) electroencephalogram(EEG)
  • 相关文献

参考文献7

二级参考文献98

共引文献143

同被引文献138

引证文献15

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部