摘要
坐标转换在缓解物联网终端负载压力方面起到积极作用,为了改善物联网能耗浪费现象,提出移动物联网负载终端坐标动态转换算法。首先分别从有效功率及能量方面量化负载终端,结合终端功能基本要求与数据传输信道要求,根据可移植性、定制能力以及成本原则构建物联网负载终端管理平台;其次,为使两个坐标系的原点与尺度一致,建立布尔沙转换模型,利用4点法计算转换参数,考虑干扰噪声对数据准确性的影响,采用奇异值分解法减少误差函数,获取位移向量;最后,通过网格坐标转化法将大区域分解为小网格单元,以网格节点为中心,经过双线性内插完成坐标动态转换。仿真结果证明,所提方法可减少坐标转换误差,并通过负载终端实际位置明确个体负责区域,提升整体能耗利用率。
In order to reduce the waste of IoT energy consumption,a dynamic coordinate transformation algorithm of mobile IOT load terminals was put forward.Firstly,we should quantify the load terminals in terms of effective power and energy.According to the principles of transferability,customization ability and cost,w combined with the basic requirements of terminal functions and data transmission channel requirements to build the IoT load terminal management platform.In order to strive for consistency between the original point and scale of two coordinate systems,we built the Bursa transformation model,and used the four-point method to calculate the transformation parameters.After considering the influence of interference noise on data accuracy,we used the singular value decomposition method to reduce the error function and obtain the displacement vector.Finally,the large area was divided into small grid elements by grid coordinate transformation method.Taking the grid node as the center,we completed the dynamic transformation of coordinate by bilinear interpolation.Simulation results prove that the proposed method can reduce the error of coordinate conversion and determine the region of individual responsibility through the actual location of load terminal,and thus to improve the overall energy utilization efficiency.
作者
史西兵
赵政文
SHI Xi-bing;ZHAO Zheng-wen(School of Information,Xi'an University of Finance and Economics,Xi'an Shanxi 710100,China;School of Computer Science,Northwestern Polytechnical University,Xfan Shanxi 710129,China)
出处
《计算机仿真》
北大核心
2021年第1期247-250,260,共5页
Computer Simulation
基金
中国(西安)丝绸之路研究院科学研究项目(2016SDZ07)
西安财经大学科学研究计划项目(14XCK06)。
关键词
移动物联网
负载终端
坐标动态转换
奇异值分解
布尔沙模型
Mobile Internet of things(IoT)
Load terminal
Dynamic transformation of coordinate
Singular value decomposition
Bursa model