期刊文献+

基于偏态深度分类的高炉硅含量及波动预测 被引量:3

Prediction of blast furnace silicon content and fluctuation based on skewness depth classification
原文传递
导出
摘要 高炉冶炼是个具有高度复杂性、混沌性、时滞性的动态过程,工业上常常用铁水硅含量反馈高炉炉温热状态波动变化,而偏态投影深度在数据有偏时可以较好地反映出数据的离群情况,在高维数据分类计算中十分稳健.首先,通过差分处理及相关性分析确定11个影响因素作为输入变量,用于研究各变量变化对硅含量变化的关系;然后,将偏态投影深度值在90%的置信区间外的数据视作离群值,分为稳定类和离群类;最后,对稳定数据利用Elman神经网络预测模型进行预测,对于离群类利用Logistic模型在炉温不同波动方向下的规律进行归类预测.实例仿真研究表明,稳定类157炉的预测精度高达85.3%,离群类的预测精度达到82.6%. Blast furnace smelting is a dynamic process with high complexity,chaos and time delay.In industry,molten iron silicon content is often used to feed back the fluctuation of blast furnace temperature and thermal state.The skew projection depth can reflect the outliers of the data well when the data is biased,and it is very robust in the classification calculation of high-dimensional data.Firstly,11 influencing factors are determined as input variables through differential processing and correlation analysis in this paper,which are used to study the relationship between changes of various variables and changes of silicon content.Then,the data whose projection depth value is outside 90%confidence interval are regarded as outliers and classified into stable and outliers.Finally,the stable data are predicted by Elman neural network prediction model,and the outliers are classified and predicted by Logistic model under different fluctuation directions of furnace temperature.The simulation results show that the prediction accuracy of stable class 157 furnace is up to 85.3%,and that of outlier class is up to 82.6%.
作者 罗世华 陈坤 LUO Shi-hua;CHEN Kun(College of Statistics,Jiangxi University of Finance and Economics,Nanchang 330013,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第2期491-497,共7页 Control and Decision
基金 国家自然科学基金项目(61973145) 江西省教育厅重点项目(GJJ180247).
关键词 硅含量 偏态投影深度 ELMAN神经网络 LOGISTIC模型 预测 silicon content skew projection depth Elman neural network Logistic model prediction
  • 相关文献

参考文献9

二级参考文献88

共引文献142

同被引文献36

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部