期刊文献+

正定矩阵流形上的系统控制算法

Control Algorithms for Positive Definite Matrix Manifolds
下载PDF
导出
摘要 非线性问题出现在多个领域,如何处理非线性问题是科学工作者们关注的热点.本文针对控制系统的结构和控制问题,利用正定矩阵流形上的几何结构,设计出一个以正定矩阵为输出的控制系统.为使得系统输出尽可能接近相应的指标,根据不同的度量结构设计出相应的自然梯度算法,实验结果验证了算法的有效性. Nonlinear problems appear in many fields.How to deal with nonlinear problems is a hot topic in scientist attention.On the structure and control problems of control systems,in this paper,making use of the geometric structure of positive definite matrix manifold,a control system was designed with positive definite matrix as its output.In order to make the system output as close to the corresponding index as possible,a corresponding natural gradient algorithm was designed according to different measured structures,and some experiments were carried out to verify the effectiveness of the algorithm.
作者 纳文 孙福鹏 曾澍楠 孙华飞 AUNG Naing Win;SUN Fupeng;ZENG Shunan;SUN Huafei(School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第2期221-225,共5页 Transactions of Beijing Institute of Technology
基金 北京市科委创新资助项目(Z161100005016043)。
关键词 非线性问题 正定矩阵流形 控制系统 自然梯度算法 nonlinear problems positive definite matrix manifold control system natural gradient algorithm
  • 相关文献

参考文献2

二级参考文献8

  • 1Fiori S. Extended Hamiltonian learning on Riemannian manifolds: theoretical aspects [J:. Neural Networks, IEEE Transactions on, 2011,22(5) :687 - 700. 被引量:1
  • 2Fiori S. Extended Hamiltonian learning on Riemannian manifolds: numerical aspects[J:. Neural Networks and Learning Systems, IEEE Transactions on, 2012,23 (1) : 7 -21. 被引量:1
  • 3Amari S I. Natural gradient works efficiently in learning[J]. Neural Computation, 1998,10(2) :251 - 276. 被引量:1
  • 4Luo Z, Sun H. Extended Hamiltonian algorithm for the solution of discrete algebraic Lyapunov equations [J]. Applied Mathematics and Computation, 2014, 234: 245 - 252. 被引量:1
  • 5Zhang Z, Sun H, Peng L. Natural gradient algorithm for stochastic distribution systems with output feedback [J]. Differential Geometry and its Applications, 2013, 31:682 - 690. 被引量:1
  • 6Moakher M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices[ J 1. SIAM Journal on Matrix Analysis and Applications, 2005,26 (3) : 735 - 747. 被引量:1
  • 7Arsigny V, Fillard P, Pennec X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2007,29(1) :328 - 347. 被引量:1
  • 8Duan X, Sun H, Zhao X. Riemannian gradient algorithm for the numerical solution of linear matrix equationsEJ3. Journal of Applied Mathematics, 2014. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部