期刊文献+

PSO-BP神经网络预测模型在智慧课堂中的应用研究 被引量:2

Research on the application of PSO-BP neural network predictive model in smart classroom
下载PDF
导出
摘要 大学生的学习成绩与其学习状态和习惯有正相关性。教师工作手册中记录的考勤、答问与作业信息反映了学生的学习状态,智慧课堂中的随堂提问、课后作业、座位偏好等信息进一步反应出学生的行为习惯。充分利用上述数据进行期末成绩预测并向学生反馈学业警示和鼓励信息,将对教学起到积极作用。设计了PSO-BP神经网络预测模型来进行学生行为数据挖掘,筛选了具有代表性的数据作为神经网络的输入,选择课程成绩作为神经网络的输出,成绩预测误差为12%,为提高教学质量提供了新的思路。 College students’academic performance is positively correlated with their learning status and habits.The attendance,Q&A,and homework information recorded in the teacher’s work manual reflects the student’s learning status.In the smart classroom,information such as in-class questions,homework,seat preference,etc.further reflects the behavior of students.Making full use of the above-mentioned data to predict the final grade and feedback the academic warnings and encouraging information to students will play a positive role in teaching.The PSO-BP neural network prediction model is designed to conduct student behavior data mining,representative data is selected as the input of the neural network,and the course score is selected as the output of the neural network,and the score prediction error is 12%,which provides a new idea for improving the teaching quality.
作者 郭涛 魏勇 熊杰 Guo Tao;Wei Yong;Xiong Jie(Electronics&Information School,Yangtze University,Jingzhou,Hubei 434023,China;Huanggang Normal College)
出处 《计算机时代》 2021年第3期52-56,共5页 Computer Era
基金 教育部科技发展中心高校产学研创新基金(2018A03009)。
关键词 PSO算法 BP算法 神经网络 成绩预测 智慧课堂 数据挖掘 PSO algorithm BP algorithm neural network performance prediction smart classroom data mining
  • 相关文献

参考文献6

二级参考文献38

  • 1乔珠峰,田凤占,黄厚宽,陈景年.缺失数据处理方法的比较研究[J].计算机研究与发展,2006,43(z1):171-175. 被引量:13
  • 2黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 3孙云帆,齐美玲.数据挖掘在教育应用中的浅析[J].商场现代化,2012(8)693期:161-162. 被引量:3
  • 4Bames T.The q-matrix method:Mining student response data for knowledge[C]// American Association for Artificial Intelligence 2005 Educational Data Mining Workshop.2005. 被引量:1
  • 5PAVLIK,P.,CEN,H.and KOEDINGER,K.R.Learning Factors Transfer Analysis:Using Learning Curve Analysis to Automatically Generate Domain Models[C]// In Proceedings of the 2nd International Conference on Educational Data Mining,2009:121-130. 被引量:1
  • 6Gong Y,Rai D,Beck J E,et al.Does Self-Discipline Impact Students * Knowledge and Learning[J].International Working Group on Educational Data Mining,2009:61-70. 被引量:1
  • 7Perera D,Kay J,Koprinska I,et al.Clustering and sequential pattern mining of online collaborative learning data[J].Knowledge and Data Engineering,IEEE Transactions on,2009(6):759-772. 被引量:1
  • 8Khan Z N.Scholastic achievement of higher secondary students in science stream[J].Journal of Social Sciences,2005(2):84. 被引量:1
  • 9Al-Radaideh Q A,Al-Shawakfa E M,Al-Najjar M I.Mining student data using decision trees[C]//International Arab Conference on Information Technology(ACIT 2006),Yarmouk University,Jordan.2006. 被引量:1
  • 10Tahir S,Naqvi S M M R.Factors Affecting Students,Performance A Case Of Private Colleges[J].Bangladesh e-journal of sociology,2006(1):90. 被引量:1

共引文献58

同被引文献16

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部