期刊文献+

适用全速域大曲率路径的自动驾驶跟踪算法 被引量:7

Autonomous vehicle tracking algorithm for high curvature path in full speed range
原文传递
导出
摘要 目的路径跟踪是自动驾驶汽车根据感知、决策和规划结果正确沿道路行驶的关键部分。目前路径跟踪算法难以在全速域、复杂路径场景和高自由度动力学模型下取得优异的性能,并且未考虑与纵向控制的耦合特性,限制了控制算法的跟踪性能。针对以上问题,提出了一种基于速度自适应预瞄的无模型转向控制算法。方法根据车辆与跟踪路径的横向偏差与角度偏差,建立车辆方向盘输出控制量方程,该方法实现了在动力学高度复杂情况和跟踪路径可导情况下的低速稳定跟踪。同时根据车辆纵向速度自适应设置跟踪预瞄距离,并将速度耦合参数加入方程,实现了车辆全速域、全路径的稳定跟踪。结果本文在PanoSim自动驾驶仿真系统和Simulink仿真软件进行仿真实验,在高自由度动力学模型下,本文算法实现在超高速(> 220 km/h)直线及小曲率跟踪路径中横向偏差变化量Δd的模Δd <0.1 m、在高速(> 150 km/h)大曲率弯道跟踪路径中Δd <0.3 m的性能。结论本文提出的基于速度自适应预瞄的无模型转向控制算法可以实现全速域、大曲率的路径稳定跟踪。 Objective Path tracking is the key part of an automatic driving vehicle running along a road according to the perception system and decision system results. The control module involved in path tracking is the lowest-level software algorithm module of autopilot,which includes two parts: lateral control and longitudinal control. Steering control is mainly responsible for vehicle steering output control,and longitudinal control is mainly responsible for throttle and brake control.The steering control algorithm tracks and controls the path of the two upper frameworks on the basis of perception and decision,and it optimizes the tracking error to ensure the stability and comfort of the self-driving vehicle. Current tracking algorithms mainly include model-free lateral control algorithm and model-based lateral control algorithm. The representative of model free lateral control algorithm is proportion integration differentiation (PID) control. The PID algorithm is difficult to use in controlling automatic driving vehicles without considering the physical characteristics of the vehicle and in high-speed and complex environments. The model-based lateral control algorithm includes the lateral control algorithm based on vehicle kinematics model and the lateral dynamics algorithm based on vehicle dynamic model. The former is represented by the Stanley method based on front-wheel feedback and rear-wheel control based on rear-wheel feedback. The latter is represented by the lateral control algorithm of linear quadratic regulator based on the dynamic model. Algorithms based on the vehicle model need to accurately model the kinematic or dynamic characteristics of the vehicle and usually need to simplify the model to predict the state of vehicle tracking deviation by simplifying the modeling of the model. This approach thus achieves accurate control of the vehicle. In addition,these two lateral control algorithms do not consider the coupling characteristics with longitudinal control,which limits the tracking performance of the con
作者 张龑 郑颖 鲍泓 Zhang Yan;Zheng Ying;Bao Hong(China University of Mining&Technology(Beijing),Beijing 100083,China;Beijing Union University,Beijing 100101,China)
出处 《中国图象图形学报》 CSCD 北大核心 2021年第1期135-142,共8页 Journal of Image and Graphics
关键词 自动驾驶 转向控制 路径跟踪 预瞄 速度耦合 PanoSim automatic driving steering control path tracking preview velocity coupling PanoSim
  • 相关文献

参考文献4

二级参考文献34

  • 1李旭,张为公,陈晓冰.无人驾驶车辆侧向鲁棒控制的研究[J].汽车工程,2004,26(6):730-734. 被引量:5
  • 2郭纯,王江,乔国栋.自主汽车的侧向H_∞自适应变论域模糊控制[J].控制理论与应用,2005,22(6):905-912. 被引量:4
  • 3马莹,李克强,高峰,郭磊,连小珉.改进的有限时间最优预瞄横向控制器设计[J].汽车工程,2006,28(5):433-438. 被引量:30
  • 4Ackermann J, Guldner J, Utkin V I. A Robust Nonlinear Control Approach to Automatic Path Tracking of a Car[ C ]. International Conference on Control, 1994 : 196 - 201. 被引量:1
  • 5Han-Shue T, Bougler B, Farrell J A, et al. Automatic Vehicle Steering Controls : DGPS/INS and Magnetic Markers [ C ]. Pro- ceedings of the American Control Conference, Denver, Colorado: IEEE ,2003160 - 65. 被引量:1
  • 6Ackermann J. Robust Control: The Parameter Space Approach [ M ]. 2nd ed. London: Springer,2002. 被引量:1
  • 7Broggi A, Bertozzi M, Fascioli A, et al. The ARGO Autonomous Vehicle's Vision and Control Systems [ J 1. The International Jour- nal of Intelligent Control and Systems, 1999,3 ( 4 ) :409 - 441. 被引量:1
  • 8Junmin W, Steiber J, Surampudi B. Autonomous Ground Vehicle Control System for High-speed and Safe Operation[ C ]. American Control Conference ,2008:218 - 223. 被引量:1
  • 9Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley : The Robot that Won the DARPA Grand Challenge [ J ]. Journal of Field Ro- botics,2006,23 (9) :661 - 692. 被引量:1
  • 10Urmson C, Ragusa C, Ray D, et al. A Robust Approach to High- speed Navigation for Unrehearsed Desert Terrain [ J ]. Journal of Field Robotics ,2006,23 ( 8 ) :467 - 508. 被引量:1

共引文献273

同被引文献70

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部