期刊文献+

基于BPNN的球艏降阻优化模型构建研究 被引量:5

Research of model building for bulbous bow resistance optimization based on BPNN
下载PDF
导出
摘要 船型优化可以减少船舶航行过程中的阻力,是提高船舶快速性的主要途径.在现代船体型线优化设计过程中,通常反复使用计算流体力学(CFD)软件进行仿真计算,船舶模拟模型船型样本多、计算量大,使优化的时间成本大幅提高,引入变精度模型将有效解决此问题.以油船球艏优化为例构建了球艏降阻优化BP神经网络(BPNN)模型,可作为低精度模型在优化迭代过程中对大量设计点进行快速阻力预报,通过变量的相关分析,预报出总阻力的变化趋势,寻求逼近最优解的设计点,并为下一步在基于变精度模型的球艏降阻优化研究中神经网络的应用提供经验与支持. Ship form optimization can reduce the resistance of the ships,which is the main way to improve the rapidity of ships.In the process of modern ships form optimization design,the software of computational fluid dynamics(CFD)is often used repeatedly for simulation calculation.Due to the large number of samples and large amount of calculation,the time cost of optimization is greatly increased.If the variable precision model is introduced,the problem of time cost will be solved effectively.Taking an oil tanker as sample,a BP neural network(BPNN)model for bulbous bow resistance optimization is established,which can be used as a low fidelity model to predict the resistance to a large number of design points during optimization iteration.Through the correlation analysis of variables,the variation trend of the total resistance is predicted,and the design point approaching the optimal solution is determined,which can provide experience and support for the application of neural network in bulbous bow resistance optimization based on the variable fidelity model.
作者 张维英 周俊秋 于博文 于洋 ZHANG Weiying;ZHOU Junqiu;YU Bowen;YU Yang(School of Navigation and Naval Architecture, Dalian Ocean University, Dalian 116023, China)
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2021年第2期160-171,共12页 Journal of Dalian University of Technology
基金 国家自然科学基金青年基金资助项目(51509124).
关键词 球艏优化 Holtrop法 相关分析 BP神经网络 低精度模型 bulbous bow optimization Holtrop method correlation analysis BP neural network low fidelity model
  • 相关文献

参考文献4

二级参考文献20

  • 1杨凤章.中高速舰船超大型球鼻设计[J].船舶,1994,5(1):22-35. 被引量:6
  • 2苏子健,钟毅芳.系统近似建模技术的研究与比较[J].系统工程与电子技术,2005,27(5):834-836. 被引量:10
  • 3穆雪峰,姚卫星,余雄庆,刘克龙,薛飞.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(5):608-612. 被引量:152
  • 4林焰,中远冷运7船体型线改型多方案优化设计(Report98004),1998年,8页 被引量:1
  • 5Martin J D, Simpson T W. Use of kriging models to approxi- mate deterministic computer models [J].AIAA Journal, 2005, 43(4) : 853-863. 被引量:1
  • 6Clarke S M, Griebsch J H, Simpson T W. Analysis of sup- port vector regression for approximation of complex engineer ing analyses[J]. ASME Trans Journal of Mechanical Design, 2005, 127(6): 1077-1087. 被引量:1
  • 7Wang G G, Shan S. Review of metamodeling techniques in support of engineering design optimization[J]. ASME Trans Journal of Mechanical Design, 2007, 129(4) : 370-380. 被引量:1
  • 8Jin R, Chen W, Simpson T W. Comparative studies of meta-modeling techniques under multiple criteria[J]. Journal of Structures and Multidisciplinary Optimization, 2001, 23( 1 ) : 1-13. 被引量:1
  • 9Simpson T W, Peplinski J D, Koch P N, etal. Metamodels for computer based engineering design: Survey and recom mendadons[J]. Engineering with Computers, 2001, 17: 129- 150. 被引量:1
  • 10FriedmanJ H. Multivariate adaptive regressiori splines[J]. Annals of Statistics, 1991, 19(1): 1-67. 被引量:1

共引文献38

同被引文献37

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部