期刊文献+

基于显著性检测的接触网标识牌识别研究

Research on recognition of contact signs based on significance detection
下载PDF
导出
摘要 实时、准确的轨道定位是轨道检测及维护的基本条件,轨道定位的常用方法为接触网标识牌定位方法,存在识别率低、效率低等问题,本文提出基于显著性检测的接触网标识牌识别算法弥补这些缺点。首先,利用马尔科夫链显著性检测算法定位接触网立柱,获取包含标识牌的感兴趣区域;其次,采用形态学与垂直投影的方法对标识牌单个数字进行分割;最后,利用多层感知机神经网络(Multi-Layer Perceptron,MLP)分类器完成标识牌数字识别。通过实验验证了该图像处理算法具有极高的可行性,接触网立柱定位及标识牌识别的成功率可达93%以上,为轨道定位提供新思路。 Real-time and accurate track positioning is the basic condition for track inspection and maintenance.The common method for track zone positioning is the catenary sign positioning method,but there is a problem of low recognition rate.Therefore,a catenary sign recognition algorithm based on saliency detection is proposed to solve this shortcoming.First,the Markov chain saliency detection algorithm is used to locate the catenary column and obtain the area of interest that contains the sign;then the morphology and vertical projection methods is used to segment the single number of the sign;finally the multilayer perceptron neural network(Multi-Layer Perceptron(MLP))classifier is used to complete the number recognition of the sign.Experiments have verified that the image processing algorithm is extremely feasible,and the success rate of catenary column positioning and sign recognition can reach more than 93%,providing new ideas for track zone positioning.
作者 蒋丽洁 柴晓冬 李立明 郑树彬 JIANG Lijie;CHAI Xiaodong;LI Liming;ZHENG Shubin(College of Urban Rail Transit Institute,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《智能计算机与应用》 2020年第9期95-99,108,共6页 Intelligent Computer and Applications
基金 国家自然科学基金(51975347) 上海市科委重点支撑项目(18030501300)。
关键词 轨道定位 显著性检测 马尔科夫链 神经网络 标识牌识别 track positioning saliency detection Markov chain neural network sign recognition
  • 相关文献

参考文献6

二级参考文献24

  • 1段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:369
  • 2李庆庆,张燕平.基于模糊边缘检测算法的车牌定位[J].计算机技术与发展,2006,16(12):7-8. 被引量:7
  • 3王郑耀.数字图像的边缘检测[D].西安交通大学:2003. 被引量:14
  • 4曾丽华,李超,熊璋.基于边缘与颜色信息的车牌精确定位算法[J].北京航空航天大学学报,2007,33(9):1112-1116. 被引量:21
  • 5MARR D, HII-DRKTM K. Theory of edge detection[J]. Proceed-ings of the Royal Society of London. Series B. Biological Sciences.1980,207(1167) : 187-217. 被引量:1
  • 6OJALA, PIK1TIKAINEN. Multiresolution gray-scale and rotationinvariant texture classification with local binary patlerns[J]. IEEETrans. Pattern Analysis and Machine Intelligence . 2002 ? 24 ( 7 ) .971-987. 被引量:1
  • 7TAN X Y,TRIGGS II Enhanced local texture feature sets for facerecognition under difficult lighting conditions[C]. In: Proceedingsof the 3rd International Conference on Analysis and Modeling ofFaces and Gestures. Rio de Janeiro. Brazil: Springer, 2007: 168-182. 被引量:1
  • 8Lowe D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer vision,1999,2:1150-1157. 被引量:1
  • 9Sebe N,Lew M S.Comparing salient point detectors[J].Pattern Recognition Letters,2003,24(1):89-96. 被引量:1
  • 10Kadir T,Brady M.Saliency,scale and image description[J].International Journal of Computer Vision,2001,45(2):83-105. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部