摘要
In this paper,the dynamic characteristics of the bubble in a broken confined domain are studied.The broken confined domain is composed of a solid wall and a plate that has a hole.The axisymmetric numerical model is established by combining the Eulerian finite-element method with volume of fluid(VOF)method,and is validated by comparing the results with those from an experiment.Then the influences of the wall distance,plate distance and size of the hole are analyzed.The results show that cavity-attraction jet caused by the hole and annular jet caused by the upper solid wall compete with each other to dominate the bubble dynamics.The cavity-attraction jet develops earlier,but slower.Thus,jet load in the bubble stage is mainly generated by the annular jet with a higher impact speed.Within a certain range,the closer the hole is to the bubble or the smaller the hole,the longer the pulsation period of the bubble will be.
基金
Project supported by the National Key Research and Development Program of China(Grant No.2018YFC0308900)
the National Natural Science Foundation of China(Grant Nos.51879050,51925904).