期刊文献+

基于高斯似然估计因子分析的点云配准算法 被引量:2

POINT CLOUD REGISTRATION ALGORITHM BASED ON GAUSSIANLIKELIHOOD ESTIMATION FACTOR ANALYSIS
下载PDF
导出
摘要 为解决三维点云数据在白噪声、数据不对应的情况下的配准问题,提出基于高斯似然估计因子分析的点云配准算法。采用因子分析法对点云数据进行表示,利用极大似然估计的方法求得因子载荷矩阵,从而完成对带噪声点云的配准。仿真实验表明,与CDP算法和Go-ICP算法相比,该算法不会陷入局部最小值,在快速精确配准和稳定性方面具有良好的鲁棒性。 In order to solve the registration problem of 3D point cloud data in the case of white noise and data non-correspondence,this paper proposes a point cloud registration algorithm based on Gaussian likelihood estimation factor analysis.The point cloud data was represented by the factor analysis method,and the factor load matrix was obtained by the method of maximum likelihood estimation,thereby completing the registration of the noisy point cloud.In the simulation experiment,compared with the CDP algorithm and the Go-ICP algorithm,the proposed algorithm does not fall into the local minimum,and has good robustness in fast and accurate registration and stability.
作者 李灿 孙未 张力云 Li Can;Sun Wei;Zhang Liyun(The College of Nuclear Technology and Automation Engineering,Chengdu University of Technology,Chengdu 610059,Sichuan,China)
出处 《计算机应用与软件》 北大核心 2021年第3期232-236,共5页 Computer Applications and Software
关键词 点云配准 因子 似然估计 配准精度 Point cloud registration Factor Likelihood estimation Registration accuracy
  • 相关文献

参考文献6

二级参考文献35

  • 1徐金亭,刘伟军,孙玉文.基于曲率特征的自由曲面匹配算法[J].计算机辅助设计与图形学学报,2007,19(2):193-197. 被引量:19
  • 2周凯, 钱琪, 门延武. 机器人化智能工装系统:中国, CN101269466[P] . 2009-10-21. 被引量:2
  • 3Kaneko S, Kondo T, Miyamoto A. Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation[J] . Pattern Recognition, 2003, 36(9):2041-2047. 被引量:1
  • 4Yahia H M, Huot E G, Herlin I, et al. Geodesic distance evolution of surfaces:a new method for matching surfaces[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2000:663-668. 被引量:1
  • 5Besl P J, Mckay N D. A method for registration of 3-D shapes[J] . IEEE Trans on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256. 被引量:1
  • 6Chetverikov D, Stepanov D, Krsek P. Robust Euclidean alignment of 3D point sets:the trimmed iterative closest point algorithm[J] . Image and Vision Computing, 2005, 23(3):299-309. 被引量:1
  • 7Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C] //Proc of the 3rd International Conference on 3-D Digital Imaging and Modeling. 2001:145-152. 被引量:1
  • 8Pomerleau F, Colas F, Siegwart R, et al. Comparing ICP variants on real-world data sets[J] . Autonomous Robots, 2013, 34(3):133-148. 被引量:1
  • 9Les A P, Wayne T. The NURBS book[M] . 2nd ed. New York:Springer, 1997. 被引量:1
  • 10UIUC airfoil coordinates database[EB/OL] . http://aerospace. illinois. edu/m-selig/ads/coord_database. html. 被引量:1

共引文献86

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部