期刊文献+

数据匮乏场景下采用生成对抗网络的空间负荷预测方法 被引量:30

The Method of Spatial Load Forecasting Based on the Generative Adversarial Network for Data Scarcity Scenarios
下载PDF
导出
摘要 针对在历史负荷数据匮乏场景下,现有空间负荷预测方法预测结果精度较低甚至失效的问题,提出一种基于生成式对抗网络(generative adversarial networks,GAN)和RCGAN的空间负荷预测方法。该方法首先建立电力地理信息系统,并生成I类元胞和Ⅱ类元胞?然后构建基于原始GAN的数据生成模型,根据十分有限的历史负荷数据生成数量充足且兼顾负荷时空分布规律的"Ⅱ类元胞历史负荷数据",达到数据增强的目的。其次构建基于RCGAN的空间负荷预测模型。最后利用生成的"Ⅱ类元胞历史负荷数据"和确定参数的RCGAN模型实现空间负荷预测。工程实例表明该方法是正确、有效的。 Targeting at the problem lacking historical load data and issue that the forecasting method to accuracy of the existing spatial load is low or even invalid under the historical load data shortage scenario,a spatial load forecasting method based on generative adversarial networks(GAN)and recurrent convolutional generative adversarial networks(RCGAN)was proposed.The method first establishes a power geographic information system and generates class I cells and classⅡcells,then establishes a data generation model based on original GAN,and generates sufficient"classⅡcell historical load data"with taking into account load-time and space-time characteristics based on very limited historical load data.Secondly,a spatial load forecasting model based on RCGAN network was constructed.Finally,the spatial load forecasting was realized by using the generated"classⅡcell historical load data"and the constructed RCGAN model with parameters determined.Engineering examples show that the method is correct and effective.
作者 肖白 黄钰茹 姜卓 施永刚 焦明曦 王徭 XIAO Bai;HUANG Yuru;JIANG Zhuo;SHI Yonggang;JIAO Mingxi;WANG Yao(School of Electrical Engineering,Northeast Electric Power University,Jilin 132012,Jilin Province,China;School of Computer Science and Technology(Beihua University),Jilin 132021,Jilin Province,China;Tonghua Power Supply Company,State Grid Jilin Electric Power Company Co.,Ltd.,Tonghua 134001,Jilin Province,China;Changchun Power Supply Company,State Grid Jilin Electric Power Company Co.,Ltd.,Changchun 130021,Jilin Province,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2020年第24期7990-8001,共12页 Proceedings of the CSEE
基金 国家自然科学基金项目(51177009) 吉林省产业创新专项基金(2019C058-7) 吉林省教育厅科技项目(JJKH20180442KJ)。
关键词 空间负荷预测(SLF) 电力系统规划 生成式对抗网络(GAN) 卷积神经网络 长短时记忆神经网络(LSTM) spatial load forecasting(SLF) power system planning generative adversarial networks(GAN) convolutional neural network long short-term memory(LSTM)
  • 相关文献

参考文献19

二级参考文献225

共引文献982

同被引文献409

引证文献30

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部