期刊文献+

工艺参数对316L不锈钢激光熔覆层中Cr元素分布的影响 被引量:15

Effects of Process Parameters upon Chromium Element Distribution in Laser-Cladded 316L Stainless Steel
原文传递
导出
摘要 采用基于体积平均法的气-固-液三相激光熔覆模型,探究了工艺参数对45钢表面激光熔覆316L不锈钢熔覆层中Cr元素分布及其均匀性的影响。首先,使用Cr元素的平均浓度来表征熔覆层中元素的分布情况,并对熔覆过程中Cr元素分布的演变进行分析;然后,将Cr元素在y方向分布的计算结果与实验结果进行对比,验证了模型的可靠性;之后通过设定的正交工艺参数进行模拟,探究工艺参数与熔覆层中Cr元素平均含量之间的关系;最后,根据模拟结果对熔池的流动行为进行分析,探究工艺参数与熔覆层中Cr元素在x方向分布均匀性之间的关系。研究结果表明:对熔覆层中Cr元素含量影响最大的工艺参数是送粉率,然后依次为激光功率和扫描速度,送粉率与Cr元素含量呈正相关,激光功率与Cr元素含量呈负相关。熔池凝固速率与流速对熔覆层中Cr元素分布的均匀性有较大影响,可通过适当增大激光功率和降低扫描速度来获得元素分布更为均匀的熔覆层。 The gas-solid-liquid three-phase model based on the volume-average method was used to study the influence of process parameters upon the chromium element distribution and its uniformity in laser-cladded 316 L stainless steel on 45 steel. First, the chromium elemental distribution in cladding layer was characterized by average concentration of chromium element and the evolution of chromium element distribution during the cladding process was analyzed;secondly, the simulated and experimental Cr distributions along y direction were compared to verify the model′s reliability. Then, a simulation was performed by set the orthogonal-process parameters to obtain the relationship between the process parameters and the distribution of chromium element in the cladding layer. Finally, according to the simulation results, the flow behavior of the molten pool was analyzed to obtain the relationship between the process parameters and the uniformity of chromium element in the cladding layer along the x direction. The result shows that the powder-feeding rate has the greatest influence on chromium content in the cladding layer, followed by laser power and scanning speed in sequence. The powder-feeding rate is positively related to the average concentration of Cr, whereas the laser power is negatively related to this concentration. The solidification and flow rates of the molten pool have an important impact upon the uniformity of the chromium element distribution in the cladding layer. A cladding layer with a more uniform elemental distribution can be obtained by appropriately increasing the laser power and reducing the scanning speed.
作者 徐瀚宗 葛鸿浩 王杰锋 张群莉 姚建华 Volodymyr S.Kovalenko Xu Hanzong;Ge Honghao;Wang Jiefeng;Zhang Qunli;Yao Jianhua;Volodymyr S.Kovalenko(Institute of Laser Advanced Manufacturing Zhejiang University of Technology Hangzhou,Zhejiang 310023,China;Zhejiang Provincial Collaboration Innovation Center of High-End Laser Manufacturing Equipment Hangzhou,Zhejiang 310023,China;School of Mechanical Engineering Zhejiang University of Technology Hangzhou,Zhejiang 310023,China;Laser Technology Research Institute National Technical University of Ukraine,Kiev 03056,Ukraine)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第12期86-95,共10页 Chinese Journal of Lasers
基金 国家重点研发计划(2018YFB0407300) 国家自然科学基金(51804274) 浙江省省属高校基本科研业务费项目(科技类)(RF-C2019003)。
关键词 激光技术 激光熔覆 数值模拟 三相模型 工艺参数 元素分布 均匀性 laser technique laser cladding numerical simulation three-phase model process parameters element distribution uniformity
  • 相关文献

参考文献18

二级参考文献211

共引文献379

同被引文献153

引证文献15

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部