摘要
货运量精准预测是多式联运网络高效协同发展的重要基础,货运量时变性强、数据多样性缺失是实现精准货运量预测的问题所在。基于此,通过挖掘货物运输量(集装箱)的时间变化特征,构建初始相关时间特征输入集,结合斯皮尔曼相关性系数分布,采用Bagging+BP集成学习方法训练多个弱分类器,最终组合获取高精度的强学习模型。以南京龙潭港为例,对自回归移动平均模型(ARIMA)、Bagging+BP集成学习网络以及长短时记忆神经网络(LSTM)三种模型进行评价,实验结果表明,相比于其他模型,提出的Bagging+BP集成学习网络预测性能良好,有一定的实用价值。
In this paper,in light of the fact that accurate freight volume forecasting is an important foundation for the efficient and coordinated development of multimodal transport networks and that the strong time-varying nature of freight volume and the lack of data diversity are hindering the accurate forecasting of freight volume,and by uncovering the time varying characteristics of cargo transportation(container)volume,we constructed the time feature input set initially relevant,next,combining with the Spearman correlation coefficient distribution,used the Bagging+BP ensemble learning method to train multiple weak classifiers,and finally obtained a high-precision strong learning model.Then,taking Nanjing Longtan Port as an example,we reviewed the three models being autoregressive moving average model(ARIMA),Bagging+BP ensemble learning network and long-short-term memory neural network(LSTM),the result of which showed that compared with the other models,the Bagging+BP ensemble learning network proposed in this paper has good forecasting performance and is of certain practical value.
作者
韩振鑫
温旭丽
殷世松
武莹莹
张人杰
HAN Zhenxin;WEN Xuli;YIN Shisong;WU Yingying;ZHANG Renjie(Nanjing University of Science&Technology,Nanjing 210014;Chengxian College of Southeast University,Nanjing 210088,China)
出处
《物流技术》
2021年第2期75-78,共4页
Logistics Technology
基金
江苏省高校“青蓝工程”资助
江苏省交通运输科技项目(2019Y52)
东南大学成贤学院青年教师科研发展基金项目(z0013)。
关键词
多式联运
货运预测
集成学习
BP神经网络
时间特征
multimodal transportation
freight forecasting
ensemble learning
BP neural network
time characteristics