摘要
为研究存在障碍物环境下的电波传播问题,提出利用区域分解原理求解抛物线方程(parabolic equation,PE)的方法.该方法首先建立电波传播的PE数学模型,对障碍物所在区域进行区域分解,对不同区域的场值进行分区计算,即分别使用离散混合傅里叶变换(discrete mixed Fourier transform,DMFT)算法与有限差分(finite difference,FD)算法进行计算,并引入追赶算法提高计算效率,从而实现该情况下空间中整体场值的快速计算.最后,引入矩量法(method of moment,MoM)用于对新算法的精度验证,仿真结果表明两种方法具有较好的一致性.新算法具有适用性强、计算速度快的特点,为求解存在介质障碍物环境下的电波传播问题提供了一种新颖的可靠的途径.
In order to study the wave propagation problems under the obstacles environment,we use the domain decomposition principle to solve parabolic equation.In this method,we firstly establish the mathematical model of the parabolic equation,then decompose the domain in the barrier.Next,we calculate the field values of different regions by partition using discrete mixed Fourier transform(DMFT)and finite difference(FD)algorithms respectively.Then,Thomas algorithm is introduced to improve the calculation efficiency and achieve the total field computation quickly in the obstacles environment.Finally,method of moment is used to validate our new method.Simulation results show that two methods have good consistency.The new algorithm has the characteristics of extended applicability and increased computation speed,providing a novel and reliable approach to study the wave propagation problems under the obstacle environment.
作者
李安琪
尹成友
甘泳机
LI Anqi;YIN Chengyou;GAN Yongji(Electric Countermeasure Institute of National University of Defense Technology,Hefei 230037,China)
出处
《电波科学学报》
CSCD
北大核心
2021年第1期87-95,共9页
Chinese Journal of Radio Science