期刊文献+

结合幅度谱和功率谱字典的语音增强方法 被引量:5

Speech enhancement method combining amplitude spectrum and power spectrum dictionary
下载PDF
导出
摘要 从双路字典学习、噪声功率谱估计、语音幅度谱重构角度提出了一种改进的谱特征稀疏表示语音增强方法。在字典学习阶段,融合功率谱与幅度谱特征,采用区分性字典降低语音字典和噪声字典的相干性;在语音增强阶段,提出一种噪声功率谱估计方法对非平稳噪声进行跟踪估计;考虑到幅度谱和功率谱特征对不同噪声的适应程度不同,设计了语音重构权值表。对分别由幅度谱和功率谱恢复而来的两路信号进行自适应加权重构,结合相位补偿函数得到增强后的语音信号。实验结果表明,该方法在平稳、非平稳噪声环境下相比于单一谱特征的语音增强方法平均提高31.6%,改善了语音增强方法的性能。 An improved speech enhancement method based on sparse representation of spectral features is proposed from the perspective of dual dictionary learning,noise power spectrum estimation and speech amplitude spectrum reconstruction.In the dictionary learning stage,the power spectrum and amplitude spectrum features are combined,and the discriminative dictionary learning method is used to reduce the coherence of the speech dictionary and the noise dictionary.In the speech enhancement stage,a noise power spectrum estimation method is proposed to track and estimate the non-stationary noise.Considering the inconsistency between the amplitude spectrum and the power spectrum characteristics for different noises,a speech reconstruction weight table is designed.The two way signals recovered from the amplitude spectrum and the power spectrum are adaptively weighted,and the enhanced speech signal is obtained by combining the phase compensation function.As shown in experimental results that,compared with the single spectral feature speech enhancement method,this method improves the average of 31.6% in stationary and non-stationary noise environments,improving the performance of the speech enhancement method.
作者 聂玲子 陈雪勤 赵鹤鸣 NIE Lingzi;CHEN Xueqin;ZHAO Heming(School of Electronic and Information Engineering,Soochow University,Suzhou 215006)
出处 《声学学报》 EI CAS CSCD 北大核心 2021年第1期81-91,共11页 Acta Acustica
基金 国家自然科学基金项目(61340004)资助
  • 相关文献

参考文献3

二级参考文献30

  • 1高银秋,邓宗元,杨震.数字音频产品中基于人耳听觉感知特性的水印嵌入系统设计[J].南京邮电大学学报(自然科学版),2006,26(5):56-64. 被引量:2
  • 2YANG Lu, Loizou P C. A geometric approach to spectral subtraction. Speech Communication, 2008; 50:453-466. 被引量:1
  • 3HAO Jiucang, Hagai Attias, Srikantan Nagarajan, Te-Won Lee, Terrence J. Sejnowski. Speech enhancement, gain, and noise spectrum adaptation using approximate bayesian estimation. IEEE Trans. on Audio, Speech and Language Processing, 2009; 17(1): 24-37. 被引量:1
  • 4Kris Hermus, Patrick Wambacq, van Hamme H. A review of signal subspace speech enhancement and its application to noise robust speech recognition. EURASIP Journal on Advances in Signal Processing, 2007:1-15. 被引量:1
  • 5Sriram Srinivasan, Jonas Samuelsson, and W. Bastiaan Kleijn. Codebook-based bayesian speech enhancement for nonstationary environments, IEEE Trans. on Audio, Speech and Language Pro- cessing, 2007; 15(2): 441-452. 被引量:1
  • 6Hiroko Kato Solvang, Yuichi Nagahara, Shoko Araki, Hiroshi Sawada, and Shoji Makino. Frequency-domain pearson distribution approach for independent component analysis (FD- Pearson-ICA) in blind source separation. IEEE Trans. on Audio, Speech and Language Processing, 2009; 17(2): 639-649. 被引量:1
  • 7Jerome Bobin, Jean-Luc Starck, Jalal M. Fadili, Yassir Moudden, David L. Donoho. Morphological component analysis: an adaptive thresholding strategy. IEEE Trans. on image processing, 2007; 16(11): 2675-2681. 被引量:1
  • 8Romain Hennequin, Roland Badeau, Bertrand David. NMF with time-frequency activations to model non stationary audio events. IEEE Trans. on Audio, Speech and Language Processing, 2010; 19(4): 744-753. 被引量:1
  • 9XU Tao, WANG Wenwu. A block-based compressed sensing method for underdetermined blind speech separation incorporating binary mask. ICASSP, 2010:2022-2025. 被引量:1
  • 10Wilson K, Raj B, Smaragdis P, Divakaran A. Speech denoising using nonnegative matrix factor- ization with priors. ICASSP, 2008:4029-4032. 被引量:1

共引文献26

同被引文献18

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部