期刊文献+

基于网络流量的用户网络行为被害性分析模型 被引量:2

Victimization analysis model of user network behavior based on network traffic
下载PDF
导出
摘要 网络行为被害性分析对于电信网络诈骗犯罪的防控具有深远意义。通过研究用户与网站交互产生的网络流量,提出一种基于网络流量分析的电信网络诈骗犯罪用户网络行为被害性识别模型,分析不同网络行为特征之间的关联规则,重构网络行为序列特征,同时结合随机森林算法评估网络行为的被害性。在被害人网络行为数据集基础上进行实验,证明模型能够有效提升网络行为被害性识别准确率。 The analysis of network victimization is of great significance to the prevention and control of telecom fraud.By studying the network traffic generated by the interaction between users and websites,a victimization identification model of telecom fraud crime based on network behavior flow analysis was proposed,the association rules between different behavior characteristics were analyzed,the behavior sequence features were reconstructed,and the victimization of network behavior sequence with random forest algorithm was evaluated.Based on the network behavior data set of public security organs,the experiment proves that the model can effectively improve the recognition accuracy of network behavior victimization.
作者 周胜利 徐啸炀 ZHOU Shengli;XU Xiaoyang(Zhejiang Police College,Hangzhou 310051,China)
机构地区 浙江警察学院
出处 《电信科学》 2021年第2期125-134,共10页 Telecommunications Science
基金 浙江省公益技术研究计划(No.LGF20G030001) 校局合作项目(No.2020XJY011) 国家级创新项目(No.11483)。
关键词 网络流量 网络行为编码 关联规则挖掘 被害性分析 network traffic network behavior coding association rules mining victimization analysis
  • 相关文献

参考文献13

二级参考文献55

  • 1张红,陆谊.基于数据挖掘的电信欺诈侦测模型[J].微计算机信息,2005,21(06X):44-45. 被引量:6
  • 2[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 3[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132 被引量:1
  • 4[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999 被引量:1
  • 5[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 6[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994 被引量:1
  • 7[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994 被引量:1
  • 8[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883 被引量:1
  • 9Lane T.Machine learning techniques for the computer security domain of anomaly detection[D].Ph D Thesis.Purdue University,2000 被引量:1
  • 10Lee W,Dong X.Information-Theoretic measures for anomaly detection[C].In:Proceedings of the 2001 IEEE Symposium on Security and Privacy,Oakland,USA,2001:130~ 134 被引量:1

共引文献236

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部