期刊文献+

改进的bregman加速算法

Improved bregman acceleration algorithm
下载PDF
导出
摘要 在使用CT进行图像重建的过程中,需要在不同角度下对目标对象进行采样,然后利用图像重建算法生成重建结果,由于采样的数据越多,重建速率越慢,往往需要在不完全的采样角度下对图像进行重建,即稀疏重建。为了对传统稀疏重建算法的迭代速度进行改进,在传统bregman图像重建算法的基础上提出了一种新的加速迭代算法。该算法以bregman算法为框架,结合自适应梯度下降算法和图像修正算法,从而实现了稀疏角度下的快速重建。实验结果表明,新的加速算法对在成像效果上具有比较好的结果,且收敛速度明显加快。 In the process of CT image reconstruction,we need to sample the target in different angles, and then rebuild the results generated by image reconstruction algorithm, as a result of the more data sampled, the slower the reconstruction rate, we often require image under incomplete sampling angle for image reconstruction. In order to improve the iteration speed of the traditional sparse reconstruction algorithm, based on the traditional bregman image reconstruction algorithm, we propose a new accelerated iterative algorithm. The algorithm is based on bregman algorithm, by combining the adaptive gradient descent algorithm and image correction algorithm, the fast reconstruction under sparse angles is realized. The experimental results show that the new algorithm has good results in the imaging effect, and the convergence speed is obviously accelerated.
作者 李欣 Li Xin(shanxi international business vocational college,Tai yuan 030031,China)
出处 《长江信息通信》 2021年第1期37-40,共4页 Changjiang Information & Communications
关键词 加速算法 bregman算法 稀疏重建 采样角度 CT算法 acceleration algorithm bregman algorithm sparse optimization sampling angle CT algorithm
  • 相关文献

参考文献14

二级参考文献88

  • 1李镜,卢孝强,孙怡.有限角度CT重建方法[J].航空制造技术,2011,0(21):76-78. 被引量:5
  • 2王旭,陈志强,熊华,张丽.联合代数重建算法中基于像素的投影计算方法[J].核电子学与探测技术,2005,25(6):785-788. 被引量:11
  • 3王宏钧,路宏年,傅健.代数重建技术中投影序列选择次序的研究[J].光学技术,2006,32(3):389-391. 被引量:17
  • 4Donoho D L. Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52: 1289- 1306. 被引量:1
  • 5Candes E, Romberg J and Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006, 52: 489-509. 被引量:1
  • 6Chen S S, Donoho D L and Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM J. Sci. Comput., 1998, 20:33-61. 被引量:1
  • 7Hale E, Yin W and Zhang Y. A Fixed-Point Continuation Method for l1-Regularization with Applicatioin to Compressed Sensing[R].CAAM Technical report TR07-07, Rice Univercity, Houston, TX, 2007. 被引量:1
  • 8Yin W, Osher S, Goldfarb D, and Darbon J. Bregman iterative algorithms for l1-Regularization with Applicatioin to Compressed Sensing[J]. SIAM J. Imaging Sic., 2008, 1:143-168. 被引量:1
  • 9Cai J F, Chan R H and Shen Z. Linearized Bregman iterations for compressed sensing[J]. Math, Comp., to appear, 2008. 被引量:1
  • 10UCLA CAM Report(08-06). Math. Comp., 2009, 78(267): 1515-1536. 被引量:1

共引文献382

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部