期刊文献+

Human Activity Recognition and Embedded Application Based on Convolutional Neural Network 被引量:4

下载PDF
导出
摘要 With the improvement of people’s living standards,the demand for health monitoring and exercise detection is increasing.It is of great significance to study human activity recognition(HAR)methods that are different from traditional feature extraction methods.This article uses convolutional neural network(CNN)algorithms in deep learning to automatically extract features of activities related to human life.We used a stochastic gradient descent algorithm to optimize the parameters of the CNN.The trained network model is compressed on STM32CubeMX-AI.Finally,this article introduces the use of neural networks on embedded devices to recognize six human activities of daily life,such as sitting,standing,walking,jogging,upstairs,and downstairs.The acceleration sensor related to human activity information is used to obtain the relevant characteristics of the activity,thereby solving the HAR problem.By drawing the accuracy curve,loss function curve,and confusion matrix diagram of the training model,the recognition effect of the convolutional neural network can be seen more intuitively.After comparing the average accuracy of each set of experiments and the test set of the best model obtained from it,the best model is then selected.
机构地区 School of Automation
出处 《Journal of Artificial Intelligence and Technology》 2021年第1期51-60,共10页 人工智能技术学报(英文)
  • 相关文献

同被引文献19

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部