期刊文献+

基于红外热成像和卷积神经网络的生理表征分析

下载PDF
导出
摘要 为提高通过分析视频或图像中人的面部信息判断其生理及心理表征的准确性和可靠性,以Olivetti Faces人脸数据库中人脸数据为数据源,利用红外热成像对温度细微变化的感知以及卷积神经网络算法来对测谎过程中的视频和图像进行分析,通过分析提取参与测试者的生理表征参数,进而做出正确判定。实验结果表明:基于红外热成像和卷积神经网络的生理表征分析方法提高了测试分析的精确度。
出处 《卫星电视与宽带多媒体》 2021年第1期158-159,共2页 Satellite TV & IP Multimedia
基金 大学生创新创业训练计划项目(项目名称:基于红外热成像技术和卷积神经网络的多种疾病检测系统)支持。
  • 相关文献

参考文献3

二级参考文献74

  • 1LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 被引量:1
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. 被引量:1
  • 3LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616. 被引量:1
  • 4HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525. 被引量:1
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114. 被引量:1
  • 6GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587. 被引量:1
  • 7LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440. 被引量:1
  • 8SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf. 被引量:1
  • 9SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8. 被引量:1
  • 10HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition. 被引量:1

共引文献557

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部