期刊文献+

基于HHT-MFCC和短时能量的慢性阻塞性肺病患者呼吸声识别 被引量:4

Respiratory sound recognition of chronic obstructive pulmonary disease patients based on HHT-MFCC and short-term energy
下载PDF
导出
摘要 为了优化梅尔频率倒谱系数(MFCC)特征提取算法,提高对呼吸声信号识别的准确率,实现识别慢性阻塞性肺病(COPD)的目的,提出了基于希尔伯特黄变换(HHT)的MFCC与短时能量(Energy)融合的特征提取算法HHTMFCC+Energy。首先,经预处理的呼吸声信号通过HHT计算出Hilbert边际谱和边际谱能量;其次,谱能量通过Mel滤波器得到特征向量,再对特征向量取对数和进行离散余弦变换得到HHT-MFCC系数;最后,将信号的短时能量与HHT-MFCC特征向量融合形成新特征,并通过支持向量机(SVM)进行信号识别。将MFCC、HHT-MFCC和HHTMFCC+Energy三种特征提取算法结合SVM进行呼吸声信号识别,实验结果表明,所提出的特征融合算法在COPD患者和健康人呼吸声识别效果上都优于其他两种算法:当提取24维特征、选取100个训练样本时,识别率平均值能达到97.8%,分别比MFCC和HHT-MFCC高出6.9个百分点和1.4个百分点。 In order to optimize the Mel-Frequency Cepstral Coefficient(MFCC)feature extraction algorithm,improve the recognition accuracy of respiratory sound signals,and achieve the purpose of identifying Chronic Obstructive Pulmonary Disease(COPD),a feature extraction algorithm with the fusion of MFCC based on Hilbert-Huang Transform(HHT)and short-term Energy,named HHT-MFCC+Energy,was proposed.Firstly,the preprocessed respiratory sound signal was used to calculate the Hilbert marginal spectrum and marginal spectrum energy through HHT.Secondly,the spectral energy was passed through the Mel filter to obtain the eigenvector,and then the logarithm and discrete cosine transform of the eigenvector were performed to obtain the HHT-MFCC coefficients.Finally,the short-term energy of signal was fused with the HHT-MFCC eigenvector to form a new feature,and the signal was identified by Support Vector Machine(SVM).Three feature extraction algorithms including MFCC,HHT-MFCC and HHT-MFCC+Energy were combined with SVM to recognize the respiratory sound signal.Experimental results show that the proposed feature fusion algorithm has better respiratory sound recognition effect for both COPD patients and healthy people compared with the other two algorithms:the average recognition rate of the proposed algorithm can reach 97.8%on average when extracting 24-dimensional features and selecting 100 training samples,which is 6.9 percentage points and 1.4 percentage points higher than those of MFCC and HHT-MFCC respectively.
作者 常峥 罗萍 杨波 张晓晓 CHANG Zheng;LUO Ping;YANG Bo;ZHANG Xiaoxiao(School of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机应用》 CSCD 北大核心 2021年第2期598-603,共6页 journal of Computer Applications
关键词 呼吸声信号 慢性阻塞性肺病 希尔伯特黄变换 短时能量 特征融合 respiratory sound signal Chronic Obstructive Pulmonary Disease(COPD) Hilbert-Huang Transform(HHT) short-term energy feature fusion
  • 相关文献

参考文献6

二级参考文献41

  • 1韩文静,李海峰,韩纪庆.基于长短时特征融合的语音情感识别方法[J].清华大学学报(自然科学版),2008,48(S1):708-714. 被引量:20
  • 2肖汉光,蔡从中,廖克俊.利用声波和地震波识别军事车辆类型[J].系统工程理论与实践,2006,26(4):108-113. 被引量:7
  • 3Park J S, Kim J H.Feature vector classification based speech emotion recognition for service robots[J].IEEE Transactions on Consumer Electronics, 2009, 55 (3) :1590-1596. 被引量:1
  • 4Elliot M,Clements M,Peifer J,et al.Investigating the role of glottal features in classifying clinical depression[C]// 25th Annual International Conference of the IEEE Engi- neering in Medicine and Biology Society,2003:2849-2852. 被引量:1
  • 5Xia M, Lijiang C, Liqin EMulti-level speech emotion rec- ognition based on HMM and ANN[C]//2009 World Con- gress on Computer Science and Information Engineering, 2009: 225-229. 被引量:1
  • 6Levonen M J,Persson L,McLaughlin S.Conditioning lo- fargrams using empirical mode decomposition[C]//The 7th Nordic Signal Processing Symposium, 2006 : 170-173. 被引量:1
  • 7A. K. Majumder,S. K. Chowdhury. Recording and preliminary analysis of respiratory sounds from tuberculosis patients[J] 1981,Medical & Biological Engineering & Computing(5):561~564 被引量:1
  • 8龚英姬,胡维平.基于HHT变换的病态嗓音特征提取及识别研究[J].计算机工程与应用,2007,43(34):217-219. 被引量:7
  • 9张卫强,刘加.网络音频数据检索技术[J].通信学报,2007,28(12):152-155. 被引量:10
  • 10JAGANATHAN K,ELDAR Y C,HASSIBI B.STI~I" phase re- trieval : Uniqueness guarantees and recovery algorithms [ J ]. arXiv preprint arXiv: 1508.02820,2015. 被引量:1

共引文献11

同被引文献28

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部