期刊文献+

基于可微神经计算机和贝叶斯网络的知识推理方法 被引量:3

Knowledge reasoning method based on differentiable neural computer and Bayesian network
下载PDF
导出
摘要 针对人工神经网络(ANN)对面向知识图谱(KG)的知识推理的记忆能力有限以及KG无法处理不确定知识的问题,提出一种可微神经计算机(DNC)和贝叶斯网络(BN)相结合的推理方法DNC-BN。首先,将长短时记忆(LSTM)网络作为控制器,在每个时刻对输入向量和从记忆体获取的读向量进行处理,得到网络输出向量和交互向量;其次,通过读写头实现控制器与记忆体的交互,使用读取权重计算数据的加权平均以得到读向量,并用写入权重结合擦除向量及写入向量进行写操作,对存储矩阵进行修改;最后,基于概率推理机制,使用BN对数据节点之间存在的推理关系进行判断,对KG进行补全。在数据集WN18RR上的推理中,DNC-BN的Mean Rank为2615,Hits@10为0.528;在数据集FB15k-237上的推理中,DNC-BN的Mean Rank为202,Hits@10为0.519。实验结果表明,DNC-BN方法对面向KG的知识推理具有良好的应用效果。 Aiming at the problem that Artificial Neural Network(ANN)has limited memory capability for knowledge reasoning oriented to Knowledge Graph(KG)and the KG cannot deal with uncertain knowledge,a reasoning method named DNC-BN was propsed based on Differentiable Neural Computer(DNC)and Bayesian Network.Firstly,using Long Short-Term Memory(LSTM)network as the controller,the output vector and the interface vector of network were obtained by processing the input vector and the read vector obtained from the memory at each moment.Then,the read and write heads were used to realize the interaction between the controller with the memory,the read weights were used to calculate the weighted average of data to obtain the read vector,and the write operation was performed by combining the erase vector and write vector with the write weights,so as to modify the memory matrix.Finally,based on the probabilistic inference mechanism,the BN was used to judge the inference relationship between the nodes,and the KG was completed.In the experiments,on the WN18RR dataset,DNC-BN has the Mean Rank of 2615 and the Hits@10 of 0.528;on the FB15k-237 dataset,DNC-BN has the Mean Rank of 202,and the Hits@10 of 0.519.Experimental results show that the proposed method has good application effect on knowledge reasoning oriented to KG.
作者 孙建强 许少华 SUN Jianqiang;XU Shaohua(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao Shandong 266590,China)
出处 《计算机应用》 CSCD 北大核心 2021年第2期337-342,共6页 journal of Computer Applications
基金 国家重点研发计划项目(2018YFC1406203)。
关键词 知识图谱 知识推理 可微神经计算机 贝叶斯网络 长期记忆 Knowledge Graph(KG) knowledge reasoning differentiable neural computer Bayesian network longterm memory
  • 相关文献

参考文献5

二级参考文献137

  • 1史树明.自动和半自动知识提取[J].中国计算机学会通讯,2013.9(8):65-73. 被引量:2
  • 2张坤.面向知识图谱的搜索技术(搜狗)[EB/OL].[2015-02-18].http://www.cipsc.org.cn/kgl/. 被引量:2
  • 3李涓子.知识图谱:大数据语义链接的基石[EB/OL].[2015-02-20].http://www.cipsc.org,cn/kg2/. 被引量:2
  • 4SHETH A, THIRUNARAYAN K. Semantics empowered Web 3.0:managing enterprise, social, sensor, and cloud-based data and service for advanced applications[M]. San Rafael, CA: Morgan and Claypool, 2013. 被引量:1
  • 5BERNERS-LEE T, HENDLER J, LASSILA O. The semantic Web[J]. Scientific American Magazine, 2008, 23(1): 1-4. 被引量:1
  • 6AMIT S. Introducing the knowledge graph[R]. America: Official Blog of Google, 2012. 被引量:1
  • 7Wikipedia. Knowledge graph[EB/OL]. [2016-05-09]. https://en.wikipedia.org/wiki/Knowledge_Graph. 被引量:1
  • 8Shenshouer. Neo4j[EB/OL], [2016-05-09]. http://neo4j. comL. 被引量:1
  • 9FlockDB Official. FlockDB[EB/OL]. [2016-05-09]. http:// webscripts.softpedia.com/script/Database-Tools/FlockDB- 66248.html. 被引量:1
  • 10Graphdb Official. Graphdb[EB/OL]. [2016-05-09]. http:// www.graphdb.net/. 被引量:1

共引文献672

同被引文献71

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部