期刊文献+

二维过渡金属硫族化合物中的缺陷和相关载流子动力学的研究进展 被引量:3

Progress on defect and related carrier dynamics in twodimensional transition metal chalcogenides
下载PDF
导出
摘要 原子级厚度的单层或者少层二维过渡金属硫族化合物因其独特的物理特性而被寄希望成为下一代光电子器件的重要组成部分。然而,二维材料的缺陷在很大程度上影响着材料的性质。一方面,缺陷的存在降低了材料的荧光量子效率、载流子迁移率等重要参数,影响了器件的性能。另一方面,合理地调控和利用缺陷催生了单光子源等新的应用,因此,表征、理解、处理和调控二维材料中的缺陷至关重要。本文综述了二维过渡金属硫族化合物中的缺陷以及缺陷相关的载流子动力学研究进展,旨在梳理二维材料中的缺陷及其超快动力学与材料性能之间的关系,为二维过渡金属硫族化合物材料特性和高性能光电子器件的相关研究提供支持。 Because of their unique physical properties,the monolayer and few-layer two-dimensional transition metal chalcogenides with atomic-level thickness are expected to play an important role in the next generation of optoelectronic devices.However,defects in two-dimensional materials affect their properties to a great extent.On one hand,defects reduce the fluorescence quantum efficiency,carrier mobility and other important device parameters.On the other hand,the control and utilization of defects have given birth to new techniques such as using single-photon sources.Therefore,it is very important to characterize,understand,handle and control the defects in two-dimensional materials.In this review,the research progress on defects and its related carrier dynamics in two-dimensional transition metal chalcogenides is summarized.This paper aims to sort out the great influence of defects and their related ultrafast dynamics on material performance in two-dimensional transition metal chalcogenides,and to support studies on fundamental physical properties and high-performance optoelectronic devices.
作者 王云坤 李耀龙 高宇南 WANG Yun-kun;LI Yao-long;GAO Yu-nan(State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,School of Physics,Peking University,Beijing 100871,China;Frontiers Science Center for Nano-optoelectronics,Peking University,Beijing 100871,China)
出处 《中国光学》 EI CAS CSCD 北大核心 2021年第1期18-42,共25页 Chinese Optics
基金 国家重点研发计划(No.2018YFA0306302) 国家自然科学基金委面上项目(No.61875002)。
关键词 二维材料 过渡金属硫族化合物 缺陷 载流子动力学 two-dimensional materials transition metal chalcogenides defects carrier dynamics
  • 相关文献

参考文献4

二级参考文献28

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197. 被引量:1
  • 2Wang Q H, Kalantar Z K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699. 被引量:1
  • 3Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263. 被引量:1
  • 4Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805. 被引量:1
  • 5Yao Z, Kane C L and Dekker C 2000 Phys. Rev. Lett. 84 2941. 被引量:1
  • 6Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317. 被引量:1
  • 7Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490. 被引量:1
  • 8Richter H, Wang Z and Ley L 1981 Solid State Commun. 39 625. 被引量:1
  • 9Campbell I and Fauchet P 1986 Solid State Commun. 58 739. 被引量:1
  • 10Comas F, Trallero Giner C and Riera R 1989 Phys. Rev. B 39 5907. 被引量:1

共引文献18

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部