摘要
为解决因分析物与局部增强电磁场弱相互作用而导致传感器灵敏度偏低的问题,通过引入微流控技术,提出一种基于电磁场作用增强的超材料吸收体太赫兹微流传感器。传感器与太赫兹波相互作用产生磁偶极子共振,在0.4~1.4 THz频段内可产生两个吸收率高于98%的谐振峰。同时,通过集成微流通道,极大促进了分析物与位于法布里-珀罗谐振腔内局部增强电磁场的相互作用,传感器灵敏度可达537 GHz/RIU。另外,结构单元设计为四重旋转对称结构,传感器具备良好的极化不敏感和宽入射角度不敏感特性。结果表明,所设计的传感器具有灵敏度高和偏振不敏感等特性,在无标记微量物质检测领域具有良好的应用潜力。
To solve the problem of the limited sensitivity,which is due to the poor interaction between the analytes and the localized enhanced electromagnetic field,the terahertz microfluidic sensor based on a metamaterial absorber with the enhanced electromagnetic field interaction is proposed by introducing the microfluidics technology.Owing to the interaction of the sensor and terahertz waves,the magnetic dipole resonances are excited and two significant absorption peaks with the absorption rates over 98%are formed in the range of 0.4~1.4 THz.Meanwhile,with integrating the microfluidic channel,the interaction between the analytes and the localized enhanced electromagnetic field located in the Fabry-Pérot cavity is dramatically enhanced,and the sensor can reach the high sensitivity of 537 GHz/RIU.In addition,the unit cell is designed as the four-fold rotational symmetrical structure,so that the polarization-insensitivitive and the wide range of incident-angle-insensitive properties of the sensor are obtained.The results indicate that the proposed sensor has the characteristics of high sensitivity and polarization-independent,and it exhibits a promising application prospect in the field of label-free trace detection.
作者
陈涛
黄锋宇
钟鑫
蒋未杰
张大鹏
CHEN Tao;HUANG Fengyu;ZHONG Xin;JIANG Weijie;ZHANG Dapeng(Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China)
出处
《光子学报》
EI
CAS
CSCD
北大核心
2021年第1期131-141,共11页
Acta Photonica Sinica
基金
广西自然科学基金(Nos.2018GXNSFAA281167,2018GXNSFAA138093)
国家自然科学基金(No.61841502)。
关键词
太赫兹
超材料吸收体
传感器
微流通道
电磁场作用增强
Terahertz
Metamaterial absorber
Sensor
Microfluidic channel
Enhanced electromagnetic field interaction