期刊文献+

基于卷积自编码器的日负荷深度嵌入聚类方法 被引量:6

Deep Embedding Clustering Method for Daily Load Based on Convolutional Auto-Encoder
原文传递
导出
摘要 负荷聚类是电力大数据分析的重要基础。针对高维日负荷数据时序特征提取困难,以及特征提取与聚类处理分离降低负荷聚类准确性的问题,文章提出了一种基于一维卷积自编码器的日负荷深度嵌入聚类方法(deep embedding clustering method based on one dimensional convolutional auto-encoder,DEC-1D-CAE)。首先,采用一维卷积自编码器网络提取负荷曲线蕴含的时序特征。然后,利用自定义聚类层对所提取的负荷特征向量进行软划分。最后,采用KL散度(Kullback-Leibler divergence,KLD)为损失函数,联合优化卷积自编码器与聚类层,得到聚类结果。算例分析表明所提方法在DBI(Davies-Bouldin index)、CHI(Calinski-Harabasz index)指标上均优于K-means、1D-CAE+K-means、基于堆叠式编码器的深度嵌入聚类方法(deep embedding clustering method based on stacked auto-encoder,DEC-SAE),所提方法可以有效提升日负荷聚类的准确性。 Clustering of load data is an important foundation for analyzing electrical big data.Aiming at the difficulty of extracting sequential features of high-dimensional daily load data,and the reduction of accuracy of load clustering due to the separation of feature extraction and clustering processing,a deep embedding clustering method based on one dimensional convolutional auto-encoder(DEC-1 D-CAE) is proposed for daily load data in this paper.Firstly, a one-dimensional convolutional auto-encoder is used to extract sequential features contained in the load curve.Then,a user-defined clustering layer is used for soft division of the extracted load feature vector.Finally,the Kullback-Leibler divergence(KLD) is used as loss function to jointly optimize convolutional auto-encoder and the clustering layer to obtain the clustering result.A numerical experiment were carried out and the results of the proposed method are better than K-means,1D-CAE + K-means and DEC-1 DCAE on both Davies-Bouldin index(DBI) and Calinski-Harabasz index(CHI),which indicate that the proposed method can effectively improve the accuracy of daily load clustering.
作者 黄冬梅 林孝镶 胡安铎 孙锦中 HUANG Dongmei;LIN Xiaoxiang;HU Anduo;SUN Jinzhong(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China;College of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《电力建设》 CSCD 北大核心 2021年第1期132-138,共7页 Electric Power Construction
基金 中国极地研究中心项目(H2019-203) 上海市科委地方院校能力建设项目(20020500700)。
关键词 负荷聚类 卷积自编码器(CAE) 深度嵌入聚类方法(DEC) 时序特征提取 load clustering convolutional auto-encoder(CAE) deep embedding clustering method(DEC) sequential feature extraction
  • 相关文献

参考文献14

二级参考文献246

共引文献1081

同被引文献64

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部