期刊文献+

融合位置估计的自适应尺度相关滤波跟踪

Adaptive Scale Correlation Filtering Tracking Based on Fusion Position Estimation
下载PDF
导出
摘要 针对相关滤波跟踪算法中不能适应目标多尺度变化的问题,提出了一种融合位置估计和尺度估计的自适应尺度相关滤波器.通过提取当前图像中不同尺度大小的目标模板,作为先验信息加到滤波器中学习,训练滤波器.对多尺度模板训练赋予新的权重定义,重新定义了多尺度模板对应的标签.提高了滤波器对目标尺度变化的敏感度.通过在CVPR 2015数据集验证,该方法的精准率为0.803、成功率为0.705.特别是在多尺度环境影响下,该算法结果优于其他算法,达到了预期跟踪效果. This paper proposed an adaptive scale correlation filter combining multi-scale supervision of position estimation and scale estimation aiming at the problem that the correlation filtering and tracking algorithm can not adapt to the target scale variation.The information about the target templates of different scales extracted from the current frame picture is added to the filter as priori information for the filter to learn and train the filter as well.A new weight definition is given to the multi-scale template training,and the corresponding label of the multi-scale template is redefined.As a result,the sensitivity of the filter to the change of target scale is improved.Verified in CVPR 2015 dataset,the accuracy rate of the new method is 0.803 and the success rate is 0.705.Especially under the influence of multi-scale environment,the results of this algorithm are better than those of other algorithms,and the expected tracking effect can be achieved.
作者 王中帅 周聪玲 王永强 高鹏 WANG Zhongshuai;ZHOU Congling;WANG Yongqiang;GAO Peng(College of Mechanical Engineering,Tianjin University of Science&Technology,Tianjin 300222,China)
出处 《天津科技大学学报》 CAS 2021年第1期62-67,共6页 Journal of Tianjin University of Science & Technology
关键词 自适应 相关滤波 尺度变化 目标跟踪 adaptive correlation filter scale variation object tracking
  • 相关文献

参考文献5

二级参考文献79

  • 1王永忠,潘泉,赵春晖,程咏梅.一种对光照变化鲁棒的均值漂移跟踪方法[J].电子与信息学报,2007,29(10):2287-2291. 被引量:5
  • 2ELGAMMAL A, DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. IEEE,2002,90 ( 7 ) : 1151-1163. 被引量:1
  • 3AVIDAN S. Support vector tracking[ J]. IEEE Trans. Part, Analy. Mach. Intell. ,2004,26(8) : 1064-1072. 被引量:1
  • 4PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Mul- timed[J]. Syst. ,2004,10(2):164-179. 被引量:1
  • 5VEENMAN C, REINDERS M, BACKER E. Resolving motion correspondence for densely moving points[ J ]. IEEE Trans. Part. Analy. Mach. Intell. ,2001,23(1) :54-72. 被引量:1
  • 6SHAFIQUE K, SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence [ J ]. IEEE Trans. Part. Analy. Mach. lntell. ,2005,27( 1 ) : 110-115. 被引量:1
  • 7COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Trans. Part. Analy. Mach. Intell., 2003,25:564-575. 被引量:1
  • 8BLACK M,JEPSON A. Eigentraeking:robust matching and tracking of articulated objects using a view-based representa- tion[J]. Int. J. Comput. Vision,1998,26(1) :63-84. 被引量:1
  • 9HARITAOGLU I, HARWOOD D, DAVIS L. W4:real-time surveillance of people and their activities [ J ]. 1EEE Trans. Patt. Analy. Mach. Intell. ,2000,22(8) :809-830. 被引量:1
  • 10MORAVEC H. Visual mapping by a robot rover[ C ]. Proceedings of the International Joint Conference on Artificial Intel- ligence ( IJCAI ), San Francisco, USA, August 20,1979 : 598-600. 被引量:1

共引文献258

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部