期刊文献+

遥感影像K-最近邻图目标分类改进算法的研究 被引量:4

Improved KNN Classification Algorithm Based on K-nearest Neighbor Graphfor Remote Sensing Images
下载PDF
导出
摘要 针对高分辨率遥感影像数据中典型目标的判别,提出基于K-最近邻图KNN改进算法的深度学习模型。该模型采用深度学习方法研究目标的属性,充分利用数据之间的关联,建立抗变换性的目标特征,可提高目标判别的准确度。高分辨遥感影像目标检测实验表明该方法的有效性。 In this paper,we proposed an improved deep learning model based on K-nearest neighbor(KNN)algorithm for the typical target discrimination of high-resolution remote sensing images.The proposed model used the deep learning algorithm to study the target attributes,and made full use of the correlation between data to establish the target characteristics that were resistant to transformation target,which could improve the accuracy of target discrimination.Finally,we proved the effectiveness of this method by the experiments of target detection of high-resolution remote sensing images.
作者 王振力 滕藤 王群 黄忠演 WANG Zhenli(不详)
出处 《地理空间信息》 2021年第2期33-35,I0005,共4页 Geospatial Information
基金 江苏省教育科学“十三五”规则课题(D/2020/01/22) 江苏警官学院高层次引进人才科研项目(JSPI19GKZL405)。
关键词 遥感影像 目标分类 KNN算法 K-最近邻图 样本剪裁 remote sensing image target classification KNN algorithm K-nearest neighbor graph sample clipping
  • 相关文献

参考文献3

二级参考文献16

  • 1张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 2王煜,白石,王正欧.用于Web文本分类的快速KNN算法[J].情报学报,2007,26(1):60-64. 被引量:33
  • 3谭松波,王月粉.中文文本分类语料库-TanCorpv1.0[EB/OL].(2007-08-29)[2008-01-20].http://www.searehforum:org.cn/tansongbo/corpus.htm. 被引量:11
  • 4RUIZ V E.An algorithm for finding nearest neighbors in (approximately) constant average time[J].Pattern Recognition Letter,1986,4(3):145-147. 被引量:1
  • 5HART P E.The condensed nearest neighbor rule[J].IEEE Transactions on Information Theory,1968,IT214(3):515-516. 被引量:1
  • 6WILSON D L.Asymptotic properties of nearest neighbor rules using edited data[J].IEEE Transactions on Systems,Man and Cybernetics,1972,2(3):408-421. 被引量:1
  • 7DEVIJVER P,KITTLER J.Pattern recognition:A statistical approach[M].Englewood Cliffs:Prentice Hall,1982. 被引量:1
  • 8KUNCHEVA L I.Fitness functions in editing KNN reference set by genetic algorithms[J].Pattern Recognition,1997,30(6):1041-1049. 被引量:1
  • 9FAGN YUAN,LIU YANG.A new density-based method for reducing the amount of training data in k-NN text classification[C]// Proceedings of the 6th International Conference on Machine Learning and Cybernetics.Hong Kong:[s.n.],2007:3372-3376. 被引量:1
  • 10Neskovie P,Cooper L N.Improving Nearest Neighbor Rule with a Simple Adaptive Distance Measure[J].Pattern Recognition,2007,28(2):207-213. 被引量:1

共引文献38

同被引文献40

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部