摘要
为了解决醇胺法燃烧后捕集二氧化碳再生能耗过高的问题,研究了一种向胺溶液中添加金属离子以降低其CO2解吸能耗的方法,称之为金属离子络合物热缓冲自热利用技术。以广泛商业化应用的单乙醇胺(MEA)溶液为研究载体,并在MEA溶液中分别添加金属离子铜或镍,通过建立含有金属离子的MEA捕集CO2体系的化学反应模型,解释金属离子热缓冲剂效应的内在机理。机理显示在MEA-金属离子-CO2-H2O体系中,金属-MEA络合物作为一种有效的反应热缓冲剂,将有机胺吸收CO2过程中释放的反应热(放热反应)存储于金属络合物的解离键能中(吸热反应),在CO2高温解吸中通过其络合放热反应将储存的能量释放出来用于CO2解吸,形成自热再生低能耗CO2捕集技术,从而降低了MEA再生的能耗。本文进行了综合的实验测定来评价金属离子对MEA溶液捕集CO2过程的性能提升影响,包括CO2反应热、解吸速率、吸收-解吸循环负载、汽液平衡溶解度等。实验结果表明铜离子或镍离子作为添加剂,能增加MEA的CO2平衡循环负载14%~20%或7%~10%,同时能够降低MEA的CO2反应热值6.6%~24%或6.0%~20%。
To solve the problem of too high energy consumption for the regeneration of carbon dioxide after the combustion of alcohol amine method,a method of adding metal ions to the amine solution to reduce the energy consumption of CO_(2) desorption was studied,and it is called the metal ion complex thermal buffer self-heating utilization technology.Using the benchmark mono-ethanolamine(MEA)absorbent,we investigated two metal-ion additives[Cu(Ⅱ)and Ni(Ⅱ)]and revealed the mechanism of metal-ion mediated amine regeneration through the development and analysis of a chemical model of MEA-Me(Ⅱ)-CO_(2)-H_(2)O.It is revealed that in such system the metal-amine complexes act as chemical energy buffer to store the CO_(2) absorption enthalpy and liberate it for CO_(2) desorption,thus reducing the regeneration energy requirement.Comprehensive experiments of metal-ion mediated CO_(2) capture process were performed to characterize the performance of CO_(2) absorption and desorption,including heat of CO_(2) reaction,CO2 desorption rate,cyclic CO_(2) loading,vapor-liquid equilibrium.The results showed that adding Cu(Ⅱ)or Ni(Ⅱ)into MEA increased the absorbent's cyclic CO_(2) loading by 14%—20%or 7%—10%,leading to a reduction of CO_(2) reaction heatby 6.6%—24%in Cu(Ⅱ)/MEA system and 6.0%—20%in Ni(Ⅱ)/MEA system.
作者
谭方园
李康康
于海
蒋凯琦
韩月衡
王晓龙
翟融融
李玉龙
陈健
TAN Fangyuan;LI Kangkang;YU Hai;JIANG Kaiqi;HAN Yueheng;WANG Xiaolong;ZHAI Rongrong;LI Yulong;CHEN Jian(State Key Laboratory of Chemical Engineering,Tsinghua University,Beijing 100084,China;CSIRO Energy,10 Murray Dwyer Circuit,Mayfield West,NSW 2304,Australia;Huaneng Clean Energy Research Institute,Beijing 102209,China;Beijing Key Laboratory of Energy Safety and Clean Utilization,North China Electric Power University,Beijing 102206,China)
出处
《化工学报》
EI
CAS
CSCD
北大核心
2021年第2期1026-1035,共10页
CIESC Journal
基金
国家科技支撑计划项目(2015BAC04B01)
澳大利亚联邦科学与工业研究组织能源中心资助项目。