期刊文献+

YOLOv4在电力巡检目标检测中的应用 被引量:5

Application of YOLOv4 in Power Inspection Target Detection
下载PDF
导出
摘要 针对电力巡检对照片快速批量目标识别的业务需求,该文以YOLOv4为技术手段实现对电力巡检照片的目标检测过程。文中首先对电力巡检的训练数据集进行精确标注,后经过Darknet深度学习框架训练,试验检测达到了良好的效果。试验结果显示,该次试验检测的准确度为0.875,召回率为0.840。此目标检测效果满足部分电力巡检对图片目标检测的需求,但仍存在训练集图片数据量少以及图片中物体特征不显著等问题。 Aiming at the business needs of power inspection for rapid batch target recognition of photos,this paper uses YOLOv4 as a technical means to realize the target detection process of power inspection photos.In this paper,the training data set of power inspection is accurately labeled first,and then trained by the Darknet deep learning framework,the test and detection have achieved good results.The test results show that the accuracy of this test is 0.875,and the recall rate is 0.840.This target detection effect meets the needs of some power inspections for image target detection.However,there are still some problems,such as the small amount of image data in training set and the insignificant features of objects in the pictures.
作者 孙兴达 郝赫 刘远 赵园园 王一梦 SUN Xingda;HAO He;LIU Yuan;ZHAO Yuanyuan;WANG Yimeng(Beijing Guodiantong Network Technology Co.,Ltd.,Beijing 100085,China)
出处 《现代信息科技》 2020年第20期115-117,共3页 Modern Information Technology
关键词 电力巡检 YOLOv4 目标检测 深度学习 power inspection YOLOv4 target detection deep learning
  • 相关文献

参考文献6

二级参考文献31

共引文献148

同被引文献86

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部