期刊文献+

Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks 被引量:10

原文传递
导出
摘要 Grape diseases are main factors causing serious grapes reduction.So it is urgent to develop an automatic identification method for grape leaf diseases.Deep learning techniques have recently achieved impressive successes in various computer vision problems,which inspires us to apply them to grape diseases identification task.In this paper,a united convolutional neural networks(CNNs)architecture based on an integrated method is proposed.The proposed CNNs architecture,i.e.,UnitedModel is designed to distinguish leaves with common grape diseases i.e.,black rot,esca and isariopsis leaf spot from healthy leaves.The combination of multiple CNNs enables the proposed UnitedModel to extract complementary discriminative features.Thus the representative ability of United-Model has been enhanced.The UnitedModel has been evaluated on the hold-out PlantVillage dataset and has been compared with several state-of-the-art CNN models.The experimental results have shown that UnitedModel achieves the best performance on various evaluation metrics.The UnitedModel achieves an average validation accuracy of 99.17%and a test accuracy of 98.57%,which can serve as a decision support tool to help farmers identify grape diseases.
出处 《Information Processing in Agriculture》 EI 2020年第3期418-426,共9页 农业信息处理(英文)
基金 This work was supported by the PublicWelfare Industry(Agriculture)Research Projects Level-2 under Grant 201503116-04-06 Postdoctoral Foundation of Heilongjiang Province under Grant LBHZ15020 Harbin Applied Technology Research and Development Program under Grant 2017RAQXJ096 and National Key Application Research and Development Program in China under Grant 2018YFD0300105-2.
  • 相关文献

参考文献2

二级参考文献52

  • 1Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716-723. 被引量:1
  • 2Ardekani M R M. 2013. Off- and on-ground GPR techniques for field-scale soil moisture mapping. Geoderma, 200-201:55-66. 被引量:1
  • 3Avolio M V, Di Gregorio S, Lupiano V, et al. 2013. SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides. Journal of Supercomputing, 65(2): 682-696. 被引量:1
  • 4Bertoldi G, Della Chi,esa S D, Notarnicola C, et al. 2014. Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling. Journal of Hydrology, 516: 245-257. 被引量:1
  • 5Brocca L, Morbidelli R, Melone F, et al. 2007. Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology, 333(2--4): 356-373. 被引量:1
  • 6Brocca L, Melone F, Moramarco T, et al. 2010. Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources kesearch, 46(2): W02516, doi: 10.1029/2009WR008016. 被引量:1
  • 7Cervarolo G, Mendicino G, Senatore A. 2010. A coupled ecohydrological-three-dimensional unsaturated flow model describing energy, H20 and CO2 fluxes. Ecohydrology, 3(2): 205-225. 被引量:1
  • 8D'Ambrosio D, Iovin." G, Spataro W, et al. 2007. A macroscopic collisional model for debris-flows simulation. Environmental Modelling & Softgare, 22(10): 1417-1436. 被引量:1
  • 9Delbari M, Afrasiab P, Loiskandl W. 2009. Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. CATENA, 79(2): 163 169. 被引量:1
  • 10D'Odorico P, Rodrigaez-Iturbe I. 2000. Space-time self-organization of mesoscale rainfall and soil moisture. Advances in Water Resources, 23(4): 349-357. 被引量:1

共引文献62

同被引文献75

引证文献10

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部