期刊文献+

城市激光点云语义分割典型方法对比研究 被引量:7

A Comparative Study on Typical Methods for Semantic Segmentation of Laser Point Clouds in Urban Areas
下载PDF
导出
摘要 基于深度学习方法在城市激光点云语义分割任务中的应用效果缺乏客观的对比与评价,该文选取当前4种代表性点云语义分割深度网络(PointNet、PointNet++、PointCNN、SPG)以及一种基于特征描述子的层次化点云语义分割方法,采用3组开放点云数据集(Semantic 3D、Oakland及TerraMobilita/iQmulus3Durban)对不同方法的语义分割质量进行对比分析,结果发现:1)层次化点云语义分割方法的语义分割质量优于另外4种深度学习方法;2)考虑局部信息的深度网络(PointNet++、PointCNN、SPG)的表现优于仅考虑点云全局特征的方法(Point-Net);3)在基于深度学习的方法中,基于超点图的SPG网络在测试数据中的效果优于其他几种网络。研究结果对于实际应用选择点云语义分割方法以及点云语义分割深度网络的设计优化具有借鉴意义。 In recent years,deep-learning methods have been developed for semantic segmentation of laser point clouds in urban areas.However,the application effect of deeplearning methods needs to be evaluated.This study presents a comparative analy-sis of four typical approaches(PointNet,PointNet++,PointCNN,SPG)and a hierarchical semantic segmentation method based on feature descriptors.Three benchmark data sets,i.e.,Semantic 3D,Oakland and TerraMobilita/iQmulus 3D urban,are used to evaluate the performance of these approaches.The results show that:1)the hierarchical method performs better than the four typical deep-learning approaches;2)the approaches(PointNet++,PointCNN,SPG)considering local information of point clouds perform better than that only considering global features of point clouds(PointNet);3)SPG performs the best among the four deeplearning approaches.The findings of this paper will be helpful for selecting point clouds semantic segmentation methods and designing deeplearning semantic segmentation methods in practice.
作者 杨柳 刘启亮 袁浩涛 YANG Liu;LIU Qi-liang;YUAN Hao-tao(Department of Geo in.formatics,School of Geosciences and Info physics,Central South University,Changsha 410083,China)
出处 《地理与地理信息科学》 CSCD 北大核心 2021年第1期17-25,I0001,共10页 Geography and Geo-Information Science
基金 国家自然科学基金项目(41971353) 湖南省自然科学基金项目(2020JJ4695)。
关键词 激光点云 城市三维信息 语义分割 深度学习 特征描述子 laser point clouds 3D information of city semantic segmentation deep learning feature descriptors
  • 相关文献

参考文献12

二级参考文献104

  • 1张齐勇,岑敏仪,周国清,杨晓云.城区LiDAR点云数据的树木提取[J].测绘学报,2009,38(4):330-335. 被引量:32
  • 2刘经南,张小红.利用激光强度信息分类激光扫描测高数据[J].武汉大学学报(信息科学版),2005,30(3):189-193. 被引量:65
  • 3隋立春,张宝印.Lidar遥感基本原理及其发展[J].测绘科学技术学报,2006,23(2):127-129. 被引量:54
  • 4张吴明,阎广建,李巧枝,赵伟.直升机电力巡线系统中利用核线约束进行线路三维重建[J].北京师范大学学报(自然科学版),2006,42(6):629-632. 被引量:18
  • 5HAALA N B C. Extraction of buildings and trees in urban environments[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54(2- 3) : 130-137. 被引量:1
  • 6IOVAN C B,CORD M D. Automatic extraction of urban vegetation structures from high resolution imagery and digital elevation model[J]. Urban Remote Sensing Joint Event, 2007, 21 (3):1-5. 被引量:1
  • 7SURESH K,LODHA E J K, DAVID P H, et al. Aerial LiDar data classification using support vector machines (SVM)[J]. Proceedings of the Conference on 3DPVT, 2006,3(4):22-28. 被引量:1
  • 8FILIN S P N. Segmentation of airborne laser scanning data using a slope adaptive neighborhood [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006,60 (2) : 71 - 80. 被引量:1
  • 9HOFLE B, GEIST T, RUTZINGER M, et al. Glacier surface segmentation using airborne laser scanning point cloud and intensity data[J]. Remote Sensing and Spatial Information Sciences, 2007 (3/W52) : 195-200. 被引量:1
  • 10MALTAMO M,PACKALEN P,PEUHKURINEN J, et al. Experiences and possibilities of ALS based forest inventory in Finland[J]. Remote Sensing and Spatial Information Sciences, 2007 (3/W52) : 270-279. 被引量:1

共引文献586

同被引文献49

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部