期刊文献+

一种基于物理光流与细节增强的湍流图像恢复方法 被引量:4

Optical Flow and Detail Enhancement for Turbulent Images Restoration
下载PDF
导出
摘要 针对远距离成像系统容易受到大气湍流中压强、温度等因素的影响,得到的图像序列会产生图像畸变与模糊等问题,提出了一种基于物理光流与引导图滤波器细节增强的方法,从受湍流影响图像序列中恢复出清晰图像。首先,利用物理光流计算序列帧与参考图像之间的位移信息差,通过位移校正获得去扭曲的图像;其次,采用归一化稀疏表示进行去模糊;最后,利用引导图滤波器将细节增强图像从去扭曲图像中提取出来。实验结果表明,该方法能有效去除湍流图像的畸变和模糊,获得相对清晰的图像,并与其他方法进行对比,证明了其优越性。 In the long-distance imaging system,image sequence was easily affected by atmospheric turbulence.In order to restore images from the turbulence degraded sequence,a method based on optical flow method and guide-image filter was proposed.Firstly,the optical flow method was used to calculate the motion difference between the sequence frames.Image interpolation processing was conducted to obtain a non-distortion frame,by using the motion information.Secondly,sparse representation and guided filters was used to calculate the final de-blurring image from the single non-distortion image.Experimental results showed that the proposed method could reduce the effects of atmospheric turbulence effectively,including temperal-spatial distortion and random blurring.The superiority of this method was proved through the comparison with other methods.
作者 刘亮 蔡泽民 赖剑煌 LIU Liang;CAI Zemin;LAI Jianhuang(Department of Electronic Engineering, Shantou University, Shantou 515063, China;School of Data Science and Computer Science, Sun Yat-Sen University, Guangzhou 510275, China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2021年第1期47-53,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(61876104) 广东省自然科学基金项目(2018A030307034)。
关键词 去扭曲 物理光流 稀疏表示 盲反卷积 引导图滤波器 atmospheric turbulence optical flow sparse representation blind deconvolution guide image filter
  • 相关文献

参考文献3

二级参考文献17

  • 1Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society Series B, 1977, 39(1): 1-38. 被引量:1
  • 2Shepp L A, Vardi Y. Maximum-likelihood reconstruction for emission tomography[J]. IEEE Trans. Med. Imag., 1982, 1(2): 113-121. 被引量:1
  • 3Schulz T J. Multiframe blind deconvolution of astronomical images[J]. J.Opt.Soc.Am.A, 1993, 10(5): 1064-1073. 被引量:1
  • 4Sheppard D G, Hunt B R, Marcellin M W. Iterative multiframe supperresolution algorithms for atomsphereric-turbulence-degraded imagery[J]. J.Opt.Soc.Am.A, 1998, 15(4): 978-991. 被引量:1
  • 5Charbonnier P, Blanc-Feraud L, Aubert G, et al. Deterministic edge-preserving regularization in computed imaging[J]. IEEE Transactions on Image Processing, 1997, 6(2): 298-311. 被引量:1
  • 6Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision [ C ]//Proc of DARPA Image Understanding Workshop. Washington, 1981 : 121 - 1B0. 被引量:1
  • 7Matthews I, Ishikawa T, Baker S. The template update problem[ J ]. IEEE transactions on Pattern Analysis and Machine Intelli- gence, 2004, 26(6):810-815. 被引量:1
  • 8Dowson N, Bowden R. Mutual information for Lucas-Kanade tracking (MILK) : an inverse compositional formulation[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30( 1 ) :180 -185. 被引量:1
  • 9Wang Kunpeng,Yang Gui. Robust tracking method with drift correction[ C]//IEEE International Conference on Image Analysis and Signal Processing. Hangzhou, 2010:403 - 406. 被引量:1
  • 10Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[ C]//IEEE Symposium on Micro Machine and Human Science. Nagoya, 1995:39 -43. 被引量:1

共引文献26

同被引文献47

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部