期刊文献+

革兰氏染色细菌显微图像深度学习分类与计数

Classification and counting of Gram-stained bacteria by deeply learning in micro-image
下载PDF
导出
摘要 菌种和数量是研究菌群失调和疾病预测的重要参数,然而细菌分类和计数工作主要由人工完成,过程繁琐,极易出错,并且耗时费力。本研究提出一种基于图像深度学习的方法对显微图像中的革兰氏阳性杆菌、革兰氏阴性杆菌、革兰氏阳性球菌和革兰氏阴性球菌进行分类。整个算法过程包括分割和分类识别两部分,首先采用U-Net"渐进分割法"对细菌部分和背景部分进行分割;然后将分割后的细菌分别投入ResNet50模型和VGG19模型进行识别和计数。将经过再训练ResNet50模型和VGG19模型的计数结果与人工分类计数标准的结果进行比较,实验结果表明ResNet50模型可以达到人工分类和计数的准确率。 Breeds and quantity of bacteria are important parameters for research of dysbacteriosis as well as disease prediction.However,the classification and counting of bacteria was a cumbersome task mainly done by humans,and the process is error-prone,time-consuming and laborious.In this paper,a method based on image deep learning was proposed to classify the four types of bacteria including Gram-positive bacilli,Gram-negative bacilli,Gram-positive cocci and Gramnegative cocci in the microscopic images.The method consists of two major procedures:one is segmentation and the other is classification and identification.First,U-Net"progressive segmentation"was used to segment the bacteria part and the background part.Second,the segmented bacteria were fed into ResNet50 model and VGG19 model for recognition and counting.Finally,the results from retrained ResNet50 model and retrained VGG19 model were compared with the manual classification counting standard,and the results from retrained ResNet50 model were shown to reach the accuracy of manual counting and classification.
作者 董宇波 王蕊 赵慧娟 张书景 DONG Yubo;WANG Rui;ZHAO Huijuan;ZHANG Shujing(School of Opto-Electronic Information Science and Technology,Yantai University,Yantai 264005,China;School of Public Health and Management,Binzhou Medical College,Yantai 264005,China;College of Career Technology of Hebei Normal University,Shijiazhuang 050000,China)
出处 《中国医学物理学杂志》 CSCD 2021年第1期127-132,共6页 Chinese Journal of Medical Physics
基金 国家自然科学基金(61701165,61771181) 山东省自然科学基金(ZR2017BF040)。
关键词 革兰氏染色菌 分类计数 U-Net ResNet 深度学习 Gram-stained bacteria classification&counting U-Net ResNet deep learning
  • 相关文献

参考文献11

二级参考文献54

  • 1周丽,周振英.流式细胞仪研制的技术进展[J].现代医学仪器与应用,2003,15(1):11-17. 被引量:17
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3国家技术监督局.海洋生物调查.海洋调查规范[M].北京:中国标准出版社,1992.17-20. 被引量:12
  • 4Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988.. 被引量:2
  • 5罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000.. 被引量:1
  • 6田捷.实用图像处理技术[M].北京:电子工业出版社,1994.. 被引量:2
  • 7王薇 郁纬军.海水分析化学和生物学方法手册[M].北京:海洋出版社,1989.107-110. 被引量:1
  • 8Hobbie JE. Use of nuclear pore filters for counting bacteria by fluorescence microscopy [J] . Appl Environ Microbial, 1977 (33) s 1225-1228. 被引量:1
  • 9Vincent L,Soille P.Watershed in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,13(6):583~598. 被引量:1
  • 10Vincent L.Morphological grayscale reconstruction in image analysis:applications and efficient algorithms[J].IEEE Transactions on Image Processing,1993,2(2):176~201. 被引量:1

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部