期刊文献+

基于U-NET3D的机器人歌声分离 被引量:2

Singing voice separation with U-NET3D for the robot
下载PDF
导出
摘要 提出了一种基于U-NET3D的机器人歌声分离方法.为了降低计算复杂度,仅在U-NET3D的第1层使用3维卷积神经网络,从输入的多声道音频中学习不同声源距离产生的幅度和相位特征.利用NAO机器人录制了具有多声源的4声道乐声混合音频数据集,录制的音乐和歌声源自iKala数据集.利用最小欧几里德距离对混音信号、伴奏和歌声进行序列匹配后合成6声道声音数据.实验结果表明,本文所提方法在噪声环境下具有良好的分离效果,与U-NET相比能更好地分离出目标歌声. A novel method of singing voice separation with U-NET3D for the robot was proposed.In order to reduce the computation,the 3D convolution neural network was used in the first layer to learn the amplitude and phase characteristics caused by the different distance of source from microphones.The NAO robot was used to record a 4-channel mixed audio dataset with multiple sound sources.The recorded music and singing voice were derived from the iKala dataset.The minimum Euclidean distance was used to match the mixing signal,accompaniment and singing sequence to synthesize 6-channel sound data.The experiment results showed that the proposed method has good separation performance in noisy environment,and can better separate target singing voice than U-NET.
作者 王大东 胡希颖 王晓宇 WANG Da-dong;HU Xi-ying;WANG Xiao-yu(College of Computer,Jilin Normal University,Siping 136000,China)
出处 《吉林师范大学学报(自然科学版)》 2021年第1期111-116,共6页 Journal of Jilin Normal University:Natural Science Edition
基金 吉林省教育厅“十三五”科学技术规划项目(JJKH20180763K)。
关键词 NAO机器人 歌声分离 U-NET3D NAO robot singing voice separation U-NET3D
  • 相关文献

参考文献3

二级参考文献154

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:210
  • 2Jutten C, Herauh J. Blind separation of sources, Part Ⅰ: An adaptive algorithm based on neuromimetic architecture [ J ]. Signal Processing, 1991,24 ( 1 ) : 1-10. 被引量:1
  • 3Bell A J, Sejnowski T J. An information-maximization ap- proach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995,7 : 1129-1159. 被引量:1
  • 4Cichocki A, Amari S. Adaptive blind signal and image processing :learning algorithms and applications [ M ]. New York : Wiley,2002. 被引量:1
  • 5Lee T W, Girolami M, Sejnowski T J, et al. Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources [J]. Neural Computation, 1999,11 ( 2 ) :409-433. 被引量:1
  • 6Hyviirinen A. Fast and robust fixed-point algorithms for independent component analysis [ J ]. IEEE Transactions on Neural Networks, 1999,10(3 ) :626-634. 被引量:1
  • 7Hyvarinen A, Cristescu R, Oja E. A fast algorithm for esti- mating overcomplete ICA bases for image windows [ C ]// Proceedings of International Joint Conference on Neural Networks. Washington D C :IEEE, 1999. 被引量:1
  • 8Hyvarinen A. Independent component analysis in the pre- sence of Gaussian noise by maximizing joint likelihood [ J ]. N erualcomputing, 1999,22 : 49 - 67. 被引量:1
  • 9Nadal J,Parga N. Non linear neurons in the low noise limit: a factorial code maximizes information transfer [ J ]. Networks, 1994,5 : 565- 581. 被引量:1
  • 10Burel G. Blind separation of sources: a nonlinear neural algorithm [ J ]. Neural Networks, 1992,5 (6) :937-947. 被引量:1

共引文献89

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部