期刊文献+

基于显著性目标检测的葡萄叶片病害分割 被引量:6

Segmentation method of grape leaf disease based deep salient object detection
下载PDF
导出
摘要 为提高葡萄叶片病害图像中病斑分割性能,提出了一种基于显著性目标检测的病斑分割方法。采用显著性目标检测网络来生成葡萄病害叶片图像的显著性图,通过多种分辨率的网格结构提取图像局部和全局信息,并将它们融合成预测特征;再对病害叶片的显著性图用自适应阈值法分割出叶片上的病害区域,并用形态学方法进行后处理。结果表明,在测试集A上,所建立的方法对病斑分割性能指标马修斯相关系数(MCC)为0.625,略低于对比算法全卷积神经网络(FCN)的0.689,但在衡量泛化性能的测试集B上,所建立方法的MCC为0.338,远高于FCN的0.072,说明所建立方法在分割精度和泛化性方面具有较好的平衡性。 To improve the quality of lesion segmentation in leaf images with clutter background and uneven lighting,a novel method was presented based deep salient object detection.Saliency target detection network was used to generate the saliency map of grape disease leaf image.The local and global information of the image were extracted by multi-resolution grid structure and fused into prediction features.Then,the diseased areas on the leaves were segmented by the adaptive threshold method on the significance map of diseased leaves,and the post-processing was carried out by the morphological method.The segmentation experimental results show that,on the test set A,the Matthews correlation coefficient(MCC)of the proposed method is 0.625,which is slightly lower than 0.689 for the convolutional neural network comparison algorithm(FCN)of.On the test set B,the MCC for the proposed method is 0.338,much higher than 0.072 for the FCN.It shows that the proposed method has good balance between the segmentation accuracy and generalization.
作者 王书志 乔虹 冯全 张建华 WANG Shuzhi;QIAO Hong;FENG Quan;ZHANG Jianhua(College of Electrical Engineering,Northwest Minzu University,Lanzhou,Gansu 730030,China;School of Mechanical and Electrical Engineering,Gansu Agricultural University,Lanzhou,Gansu 730070,China;Agricultural Information Institute,Chinese Academy of Agricultural Sciences,Beijing 100081,China)
出处 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期101-107,共7页 Journal of Hunan Agricultural University(Natural Sciences)
基金 国家自然科学基金项目(31971792) 中央高校基本科研业务费项目(31920200043)。
关键词 葡萄叶片病害 分割 显著性目标检测 grape leaf disease segmentation salient object detection
  • 相关文献

参考文献6

二级参考文献71

  • 1林晓燕,刘文耀,陈晓冬,曹茂永.杨树病害孢子的图像识别技术研究[J].仪器仪表学报,2003,24(z2):364-366. 被引量:10
  • 2岳奎.最小二乘圆法评定圆度误差的程序设计[J].工具技术,2006,40(4):79-81. 被引量:12
  • 3田有文,李天来.基于支持向量机的黄瓜病叶彩色图像分割[J].仪器仪表学报,2007,28(43):461-463. 被引量:3
  • 4Chun-Chleh. Yang, Shiy.O.Prasher, Jacques-Andre. Landry, K.Robert. A vegetation localization algorithm for precision farming[J]. Biosystems engineering, 2002, 81(2): 137- 146. 被引量:1
  • 5George.E.Meyer, Joan.Camargo.Nero, David.D.Jones, Timothy.W.Hindman. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images[J]. Computers and Electronics in Agriculture, 2004, 42(3): 161-180. 被引量:1
  • 6Woebbecke D M, Meyer G E, K.Von. Bargen, et al. Color indices for weed identification under various soil, residue and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269. 被引量:1
  • 7Steward B L, Tian L E. Machine-Vision weed density estimation for real-time, outdoor lighting, conditions[J]. Transactions of the ASAE, 1999, 42(6): 1897- 1909. 被引量:1
  • 8Camargo A, Smith J S. Image pattern classification for the identification of disease causing agents[J]. Computers and Electronics in Agriculture, 2009, 66(2): 121 -125. 被引量:1
  • 9Tang L, Tian L E, Steward B L, et al. Texture-based weed classification using Gabor wavelets and neural network for real-time selective herbicide applications[J]. ASAE, 1999, Paper No. 993036. 被引量:1
  • 10Guili Xu, Fengling Zhang, Syed Ghafoor Shah. Use of leaf color images to identify nitrogen and potassium deficient tomatoes[J]. Pattern Recognition Letters, 2011, 32(11): 1584- 1590. 被引量:1

共引文献142

同被引文献74

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部