摘要
最小距离是线性码一个很重要的参数,它反映了线性码的检错和纠错能力.基于一种求线性码最小距离的方法,利用代数编码理论和Gröbner基理论,提出了一种更高效的线性码最小距离的求解方法,其克服了运用代数方法求解线性码最小距离时复杂度高的问题.改进后的方法比原方法的计算速度更快,且在原方法计算最小距离比较复杂的情况下,改进后的方法能够给出较好的结果.
One of the most important parameter of linear code is minimum distance,which reflects the code′s ability of error detection and correction.Based on a method of finding the minimum distance of linear codes,a more efficient method for solving the minimum distance of linear codes was proposed by using the algebraic coding theory and the Gröbner basis theory.This new method overcomes the problem of high complexity in solving the minimum distance of linear codes using algebraic method.The computing speed of the new method is faster than the original method and the new method can give better results when the original method is complex to compute the minimum distance.
作者
江瑶
JIANG Yao(School of Science,Tianjin University of Technology and Education,Tianjin 300222,China)
出处
《高师理科学刊》
2020年第12期5-8,共4页
Journal of Science of Teachers'College and University
基金
国家自然科学基金项目(11601391)
天津市自然科学基金项目(18JCQNJC69700)
天津市高等学校科技发展基金计划项目(JWK1611)。