期刊文献+

基于组合预测的变压器故障诊断模型 被引量:1

Transformer Fault Diagnosis Model Based on Combination Prediction
下载PDF
导出
摘要 为了快速准确地预测出变压器的故障类型,及时做好维修工作,本文提出了一种基于非线性规划的组合预测模型.首先,利用改进的鲸鱼算法优化BP神经网络建立IWOA-BP预测模型;然后,在IWOA-BP预测模型和梯度提升树的基础上,利用非线性规划与遗传算法相结合的方法确定各算法的权系数,再将各算法的结果加权得出组合模型的最终预测结果.通过实例验证,IWOA-BP预测模型的变压器故障预测效果强于BP神经网络、随机森林等多种预测模型,并且利用IWOA-BP预测模型和梯度提升树建立的组合模型,其预测准确率高于组合中任意一种算法. In order to accurately predict the type of transformer fault and do a good job of maintenance in time,a combined prediction model based on nonlinear programming genetic algorithm is proposed.In this paper,an IWOA-BP prediction model is established by Optimizing BP neural network with improved whale algorithm,and then a combined prediction model is established based on IWOA-BP and Gradient Boosting Decison Tree prediction model.Finally,the weight coefficients of each algorithm is determined by combining nonlinear programming with genetic algorithm.On this basis,an effective combination method for transformer fault detection is proposed.Through the example verification,the improved whale algorithm has a good optimization effect,and the prediction effect of IWOA-BP prediction model is better than that of BP neural network,random forest and other six prediction models.Finally,the IWOA-BP prediction model and the GDBT are used to build the combination model,and the prediction accuracy of the combination prediction algorithm is higher than that of any combination algorithm.
作者 厉美璇 闫春 靳旭玲 LI Meixuan;YAN Chun;JIN Xuling(College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao,Shandong 266590,China;College of Science,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)
出处 《数学建模及其应用》 2020年第4期49-56,共8页 Mathematical Modeling and Its Applications
基金 国家自然科学基金(61502280)。
关键词 变压器故障 遗传算法 非线性规划 鲸鱼算法 transformer fault genetic algorithm nonlinear programming whale algorithm
  • 相关文献

参考文献9

二级参考文献81

共引文献118

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部