期刊文献+

新冠肺炎网络舆情的启示:复工复产的文本挖掘与分析

Revelation of COVID-19Net-mediated Public Opinion:Text Mining and Analysis of Resumption of Work and Production
下载PDF
导出
摘要 统筹推进新冠肺炎疫情防控和复工复产,既是一场大战,也是一场大考.以统筹推进复工复产为主题,采集了2020年2月1日至7日网络舆情数据,经筛选得出11个热点话题,采用有向聚类的方法将11个热点话题分为5类,运用词云、关联规则、复杂网络、文本倾向性分析等数据挖掘与可视化技术,着重描绘了话题的热度差异、内容特征、关联关系以及倾向趋势,从而对这7天内民众对话题的关注特征进行刻画,并给出适当建议. Coordinating the prevention and control of COVID-19 and the resumption of work and production is both a battle and a test.With the theme of promoting the resumption of work and production as a whole,this paper collected net-mediated public opinion data from February 1,2020 solstice to 7.After screening,11 hot topics were divided into 5 categories by directional clustering method.By using data mining and visualization techniques such as word cloud,association rules,complex network,text orientation analysis,etc.,the paper mainly describes the heat difference,content characteristics,relevance relationship and tendency of the topic,so as to describe the characteristics of the public’s attention to the topic in these 7 days and give appropriate suggestions.
作者 朱建平 王炫力 ZHU Jianping;WANG Xuanli(School of Management,Xiamen University;National Institute for Data Science in Health and Medicine,Xiamen University)
出处 《数学建模及其应用》 2020年第4期37-48,F0003,共13页 Mathematical Modeling and Its Applications
基金 国家社会科学基金重点项目(20ATJ005)。
关键词 统筹推进复工复产 词云 关联规则 复杂网络 文本倾向性分析 coordinate to promote the resumption of work and production word cloud association rules complex network text tendency analysis
  • 相关文献

参考文献9

二级参考文献175

  • 1于津凯,王映雪,陈怀楚.一种基于N-Gram改进的文本特征提取算法[J].图书情报工作,2004,48(8):48-50. 被引量:17
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3刘毅.略论网络舆情的概念、特点、表达与传播[J].理论界,2007(1):11-12. 被引量:312
  • 4Nasukawa T, Yi J. Sentiment anaJysis: Capturing favorability using natural language processing[C]//Proceedings of the 2nd International Conference on Knowledge Capture. New York, NJ, USA: ACM, 2003: 70-77. 被引量:1
  • 5Pang B, Lee L. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales[C]//Proceedings of the 43rd Annum Meeting on Association for Computational Linguistics. New York, N J, USA: ACM, 2005:115-124. 被引量:1
  • 6Yi J, Nasukawa T, Bunescu R, et al. Sentiment analyzer: Ex- tracting sentiments about a given topic using natural language processing techniques[C]//Proceedings of the 3rd IEEE Interna- tional Conference on Data Mining. Piscataway, N J, USA: IEEE, 2003: 427-434. 被引量:1
  • 7Kamps J, Marx M, Mokken R J, et al. Using WordNet to mea- sure semantic orientations of adjectives[C]//Proceedings of the 4th International Conference on Language Resource and Eval- uation. Paris, France: European Language Resources Associa- tion. 2004: 1115-1118. 被引量:1
  • 8Tumey P D. Thumbs up or thumbs down? Seman- tic orientation applied to unsupervised classification of re- views[C]//Proceedings of the 40th Association for Computa- tional Linguistics. Pennsylvania, USA: ACL, 2001: 417-424. 被引量:1
  • 9The Stanford Parser. A statistical parser[EB/OL]. (2009-11- 26)[2011-03-12]. http://nlp.standford.edu/software/lex-parser. shtml. 被引量:1
  • 10Semiocast , Twitter reaches half a billion accounts more than 140 million in the U. S [EB/OL]. (2012-07-30)[2013-07- 23]. http://semiocast. com/publications/2012_07 _30_ Twitter_ reaches_halCa_billion_accounts_140m_in_the_ US. 被引量:1

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部